Возрастные особенности зрительного анализатора. Основные зрительные функции и методы их исследования у детей Возрастные особенности функций зрения

Возрастные особенности зрительного анализатора. Основные зрительные функции и методы их исследования у детей Возрастные особенности функций зрения

В развитии зрительного анализаторапосле рождения выделяют 5 периодов:

1) формирование области жёлтого пятна и центральной ямки сетчатки в течение первого

полугодия жизни – из 10 слоёв сетчатки остаются 4 (зрительные клетки, их ядра и пограничные

мембраны);,

2) увеличение функциональной мобильности зрительных путей и их формирование в течение

первого полугодия жизни;

3) совершенствование зрительных клеточных элементов коры и корковых зрительных центров в

течение первых 2-ух лет жизни;

4) формирование и укрепление связей зрительного анализатора с другими органами в

течение первых лет жизни;

5) морфологическое и функциональное развитие черепных нервов в первые 2-4 мес. жизни.

Зрениеноворожденного характеризуется диффузным светоощущением. В результате недоразвития коры большого мозга оно является подкорковым (гипоталамическим), примитивным (протопатическим). Поэтому наличие зрения у новорожденного исследуется проверкой вызывания в каждом глазу реакции зрачков (прямой и содружественной) на освещение светом и общей двигательной реакции (рефлекса Пейпера – «с глаза на шею» т.е. откидывание головки ребёнка кзади, нередко до степени опистотонуса).

По мере совершенствования корковых процессов и черепной иннервации развитие зрительного восприятия проявляется у новорожденного вреакции слежения вначале в течение секунд (взор «дрейфует» в направления предмета или против, когда он останавливается даже).

Со 2-ой недели появляется кратковременная фиксация (средняя острота зрения - в пределах 0,002-0,02).

Ко 2-ому мес. появляется синхронная(бинокулярная) фиксация (острота зрения = 0,01-0,04 - появляетсяформенное предметное зрение и ребёнок живо реагирует на мать).

К 6-8 мес. дети различают простые геометрические фигуры (острота зрения = 0,1-0,3).

С 1 года – дети различают рисунки (острота зрения = 0,3-0,6) .

С 3 лет – острота зрения = 0,6-0,9 (у 5-10% детей = 1,0).

В 5 лет – острота зрения = 0,8-1,0.

В 7 -15 лет – острота зрения = 0,9-1,5.

Параллельноостроте зрения развивается цветовое зрение, но судить о его наличии удаётся значительно позже. Первая более или менее отчётливая реакция на яркие красные, жёлтые и зелёные цвета появляется у ребёнка к первому полугодию жизни. Для правильного развития цветового зрения необходимо создание детям условий хорошей освещённости и привлечения внимания к ярким игрушкам на расстоянии 50 см и больше, меняя их цвета. Детские гирлянды для новорожденного должны иметь в центре жёлтые, оранжевые, красные и зелёные шары (поскольку центральная ямка более всего чувствительна к жёлто-зелёной и оранжевой части спектра), а шары синего, белого цвета и тёмные – помещать по краям.

Бинокулярное зрениие является высшей формой зрительного восприятия. Характер зрения у новорожденного вначале монокулярный т.к. он не фиксирует взглядом предметы, а движения его глаз не координированные. Затем он становится монокулярнным альтернирующим. При возникновении к 2-ум мес. рефлекса фиксации предмета развивается одновременное зрение. На 4-ом мес.- дети устойчиво фиксируют осязаемые ими предметы т.е. возникает т.н.плоскостное бинокулярное зрение . Кроме того, возникает сужение зрачка, фиксация близких предметов т.е. аккомодация, а к 6 мес. - появляются содружественные движения глаз, конвергенция. Когда дети начинают ползать, они сопоставляя перемещение своего тела с пространственным расположением и отстоянием окружающих предметов от их глаз, изменением их величины, постепенно развивают пространственное, глубинное бинокулярное зрение. Необходимыми условиями его развития являются достаточно высокая острота зрения в обоих глазах (при visusе в одном глазу = 1,0, на другом – не меньше 0,3-0,4); нормальная иннервация глазодвигательных мышц,отсутствие патологии проводящих путей и высших зрительных центров. Стереоскопическое бинокулярное зрение развивается у ребёнка уже в 6-летнем возрасте, но полноценное глубинное бинокулярное зрение (наивысшая степень развития бинокулярного зрения) устанавливается к 9-15 годам.

Поле зрения у новорожденного, по мнению большинства авторов, развивается от центра к периферии, постепенно , в течение первых 6 мес. жизни. Область жёлтого пятна (вне центральной ямки) достаточно хорошо развита морфологически и функционально уже в раннем возрасте. Это подтверждается тем, чтозащитный рефлекс смыкания век ребёнка при быстром приближении предмета к глазу в направлении зрительной линии т.е. к центру сетчатки развивается раньше всего - на 8-ой неделе. Тот же рефлекс при движении объекта сбоку, с периферии выявляется значительно позже - лишь на 5-ом мес. жизни. В раннем возрасте поле зрения имеет узкий трубкообразный характер.

Некоторое представление о поле зрения у детей первых лет жизни можно получить лишь на основании их ориентации при движениях и ходьбе, по поворотам головы и глаз в сторону передвигающихся на различных расстояниях и различной величины и цвета предметов, игрушек.

У детей дошкольного возраста границы поля зрения примерно на 10% уже, чем у взрослых .

Тема: ФИЗИОЛОГИЧЕСКАЯ ОПТИКА, РЕФРАКЦИЯ, АККОМОДАЦИЯ И ИХ ВОЗРАСТНЫЕ ОСОБЕННОСТИ. СПОСОБЫ КОРРЕКЦИИ АНОМАЛИЙ РЕФРАКЦИИ

Учебная цель : дать понятие об оптической системе глаза, рефракции, аккомодации и их патологических состояниях; а также об их возрастных особенностях.

Учебное время : 45 мин.

Метод и место проведения занятия : групповое теоретическое занятие в аудитории.

Наглядные пособия :

1.Таблицы:Разрез глазного яблока, рисунки и схемы, 3 типа

клинической рефракции, их коррекция; изменения глаза

при прогрессирующей осложненной близорукости. Кривая

2) Цветные слайды по теме - Офтальмология, часть 1-11.

3) Учебные видеоматериалы по теме.

План лекции

Содержание лекции Время (в мин.)
1. Введение, значение данных проблем в практике врачей любой специальности. .Возрастная характеристика удельного веса различных видов рефракции
2. Физическая и клиническая рефракция (статическая) - понятие.
3. Клиническая характеристика эмметропии, миопии, гиперметропии. Методы и принципы коррекции аметропий. Корригирующие линзы (сферические, цилиндрические, собирательные, рассеивающие). Методы определения клинической рефракции.
4. Методы определения прогрессирования близорукости
5. Динамическая рефракция (аккомодация) – понятие, механизм, изменения в глазу при аккомодации; конвергенция и её роль в аккомодации; возрастные изменения аккомодации; принципы коррекции пресбиопии. Нарушения аккомодации – спазм (ложная миопия), паралич - этиопатогенез, диагностика, клиника, лечение,профилактика.
6. Карты прямой и обратной связи и ответы на вопросы

Развитие зрительного анализатора начинается на 3-й неделе эмбрионального периода.

Развитие периферического отдела. Дифференцировка клеточных элементов сетчатки происходит на 6-10-й неделе внутриутробного развития. К 3-му месяцу эмбриональной жизни в состав сетчатки входят все виды нервных элементов. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Колбочки, ответственные за цветовое зрение, еще не зрелые, и их количество невелико. И хотя функции цветоощущения у новорожденных есть, но полноценное включение колбочек в работу происходит только к концу 3-го года жизни. По мере созревания колбочек дети начинают различать сначала желтый, потом зеленый, а затем красный цвета (уже с 3 мес удавалось выработать условные рефлексы на эти цвета); распознавание цветов в более раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. Полностью различать цвета дети начинают с конца 3-го года жизни. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка. Окончательное морфологическое созревание сетчатки заканчивается к 10-12 годам.

Развитие дополнительных элементов органа зрения (дорецептор- ных структур). У новорожденного диаметр глазного яблока составляет 16 мм, а его масса 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно-до 9-12 лет. У взрослых диаметр глазного яблока составляет около 24 мм, а вес 8,0 г. У новорожденных форма глазного яблока более шаровидная, чем у взрослых, переднезадняя ось глаза укорочена. В результате в 80-94% случаев у них отмечается дальнозоркая рефракция. Повышенная растяжимость и эластичность склеры у детей способствует легкой деформации глазного яблока, что важно в формировании рефракции глаза. Так, если ребенок играет, рисует или читает, низко наклонив голову, в силу давления жидкости на переднюю стенку, глазное яблоко удлиняется и развивается близорукость. Роговая оболочка более выпуклая, чем у взрослых. В первые годы жизни радужка содержит мало пигментов и имеет голубовато-сероватый оттенок, а окончательное формирование ее окраски завершается только к 10-12 годам. У новорожденных из-за недостаточно развитой мускулатуры радужной оболочки зрачки узкие. Диаметр зрачков с возрастом увеличивается. В возрасте 6-8 лет зрачки широкие из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, что повышает риск солнечных ожогов сетчатки. В 8-10 лет зрачок вновь становится узким, а к 12-13 годам быстрота и интенсивность зрачковой реакции на свет такие же, как у взрослого. У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, и его преломляющая способность выше. Это делает возможным четкое видение предмета при большем приближении его к глазу, чем у взрослого. В свою очередь, привычка рассматривать предметы на малом расстоянии может приводить к развитию косоглазия. Слезные железы и регулирующие центры развиваются в период от 2 до 4-го месяца жизни, и поэтому слезы при плаче появляются в начале второго, а иногда и 3-4 мес после рождения.

Созревание проводникового отдела зрительного анализатора проявляется:

  • 1) миелинизацией проводящих путей, начинающейся на 8-9-м месяце внутриутробной жизни и заканчивающейся к 3-4 годам;
  • 2) дифференциацией подкорковых центров.

Корковый отдел зрительного анализатора имеет основные признаки взрослых уже у 6-7-месячного плода, однако нервные клетки этой части анализатора, как и других отделов зрительного анализатора, незрелые. Окончательное созревание зрительной коры происходит к 7-летнему возрасту. В функциональном отношении это приводит к появлению возможности образовывать ассоциативные и временные связи при окончательном анализе зрительных ощущений. Функциональное созревание зрительных зон коры головного мозга, по некоторым данным, происходит уже к рождению ребенка, по другим - несколько позже. Так, в первые месяцы после рождения ребенок путает верх и низ предмета. Если ему показать горящую свечу, то он, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу.

Развитие функциональных возможностей зрительной сенсорной системы.

О световоспринимающей функции у детей можно судить по зрачковому рефлексу, смыканию век с отведением глазных яблок кверху и другим количественным показателям светоощущения, которые определяют с помощью приборов адаптометров только с 4-5-летнего возраста. Светочувствительная функция развивается очень рано. Зрительный рефлекс на свет (сужение зрачков) - с 6-го месяца внутриутробного развития. Защитный мигательный рефлекс на внезапное световое раздражение имеется с первых дней жизни. Смыкание век при приближении предмета к глазам появляется на 2-4-м месяце жизни. С возрастом степень сужения зрачков на свет и расширение их в темноте увеличивается (табл. 14.1). Сужение зрачков при фиксации взором предмета происходит с 4-й недели жизни. Зрительное сосредоточение в виде фиксации взгляда на предмете с одновременным торможением движений проявляется на 2-й неделе жизни и составляет 1-2 мин. Длительность этой реакции с возрастом увеличивается. Вслед за развитием фиксации развивается способность к слежению взглядом за движущимся предметом и конвергенция зрительных осей. До 10-й недели жизни движения глаз некоординированны. Координация движения глаз развивается с развитием фиксации, слежения и конвергенции. Конвергенция возникает на 2-3-й неделе и становится устойчивой к 2-2,5 мес жизни. Таким образом, ощущение света у ребенка имеется по существу с момента рождения, но четкое зрительное восприятие в виде зрительных образцов ему недоступно, так как хотя сетчатка к моменту рождения развита, центральная ямка не закончила своего развития, окончательная дифференцировка колбочек заканчивается к концу года, а подкорковые и корковые центры у новорожденных являются в морфологическом и функциональном отношении незрелыми. Этими особенностями определяется отсутствие предметного зрения и восприятия пространства до 3 мес жизни. Только с этого времени поведение ребенка начинает определяться зрительной афферентацией: перед кормлением он зрительно находит грудь матери, рассматривает свои руки, схватывает расположенные на расстоянии игрушки. Развитие предметного зрения связано также с совершенством остроты зрения, моторики глаз, с образованием сложных межанализаторных связей при сочетании зрительных ощущений с осязательными и проприорецептивными. Различие форм предметов появляется на 5-м месяце.

Изменение количественных показателей светоощущения в виде порога световой чувствительности адаптированного к темноте глаза у детей по сравнению со взрослыми представлены в табл. 14.2. Измерения показали, что чувствительность к свету темноадаптированного глаза резко нарастает до 20 лет, а затем постепенно снижается. В связи с большой эластичностью хрусталика, глаза у детей более способны к аккомодации, чем у взрослых. С возрастом хрусталик постепенно теряет эластичность и его преломляющие свойства ухудшаются, объем аккомодации снижается (т.е. уменьшает прирост преломляющей силы хрусталика при его выпуклости), удаляется точка ближайшего видения (табл. 14.3).

Таблица 14.1

Возрастные изменения диаметра и реакции сужения зрачков на свет

Т аблица 14.2

Световая чувствительность адаптированного к темноте глаза людей различного возраста

Таблица 14.3

Изменение объема аккомодации с возрастом

Цветоощущение у детей проявляется с момента рождения, однако на различные цвета, оно, по-видимому, неодинаковое. По результатам электроретинограммы (ЭРГ), у детей установлено функционирование колбочек на оранжевый свет с 6 ч жизни после рождения. Есть данные о том, что в последние недели эмбрионального развития колбочковый аппарат способен реагировать на красный и зеленый цвет. Предполагают, что от момента рождения до 6-месячного возраста порядок ощущения различения цветов следующий: желтый, белый, розовый, красный, коричневый, черный, голубой, зеленый, фиолетовый. В 6 мес дети различают все цвета, но правильно называют их только с 3 лет.

Острота зрения с возрастом повышается и у 80-94% детей и подростков она больше, чем у взрослых. Для сравнения приведем данные по остроте зрения (в условных единицах) у детей разного возраста (табл. 14.4).

Таблица 14.4

Острота зрения у детей разного возраста

В связи с шарообразной формой глазного яблока, короткой переднезадней осью, большой выпуклостью роговицы и хрусталика у новорожденных величина рефракции составляет 1-3 диоптрий. У дошкольников и школьников дальнозоркость (если она есть) объясняется плоской формой хрусталика. У детей в дошкольном и школьном может развиться близорукость при длительном чтении в положении сидя с большим наклоном головы и при напряжении аккомодации, происходящем при плохом освещении во время чтения или рассматривании мелких предметов. Эти условия приводят к повышению кровенаполнения глаза, увеличению внутриглазного давления и изменению формы глазного яблока, что и является причиной развития близорукости.

С возрастом улучшается и стереоскопическое зрение. Оно начинает формироваться с 5-го месяца жизни. Этому способствует совершенствование координации движения глаз, фиксация взора на предмете, улучшение остроты зрения, взаимодействие зрительного анализатора с другими (особенно с тактильным). К 6-9-му месяцу возникает представление о глубине и отдаленности расположения предметов. Стереоскопическое зрение к 17-22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков.

Поле зрения формируется к 5-му месяцу. До этого времени у детей не удается вызвать оборонительный мигательный рефлекс при введении объекта с периферии. С возрастом поле зрения растет, особенно интенсивно от 6 до 7,5 лет. К 7 годам его размер составляет приблизительно 80% от размера поля зрения взрослого человека. В развитии поля зрения наблюдаются половые особенности. Расширение поля зрения продолжается до 20-30 лет. Поле зрения определяет объем учебной информации, воспринимаемой ребенком, т.е. пропускную способность зрительного анализатора, и, следовательно, учебные возможности. В процессе онтогенеза пропускная способность зрительного анализатора (бит/с) также изменяется и достигает в разные возрастные периоды следующих значений (табл. 14. 5).

Таблица 14.5

Пропускная способность зрительного анализатора, бит/с

Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронные, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет, или, образно говоря, «механизм точной настройки», формируется в возрасте от 5 дней до 3-5 мес. Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и в последнюю очередь-цвет.

В 7-8 лет глазомер у детей значительно лучше, чем у дошкольников, но хуже, чем у взрослых; половых различий не имеет. В дальнейшем у мальчиков линейный глазомер становится лучше, чем у девочек.

Функциональная подвижность (лабильность) рецепторного и коркового отделов зрительного анализатора тем ниже, чем моложе ребенок.

Нарушения и коррекция зрения. Важное значение в процессе обучения и воспитания детей с дефектами органов чувств имеет высокая пластичность нервной системы, позволяющая компенсировать выпавшие функции за счет оставшихся. Известно, что у слепоглухих детей повышена чувствительность тактильного, вкусового и обонятельного анализаторов. С помощью обоняния они могут хорошо ориентироваться на местности и узнавать родственников и знакомых. Чем более выражена степень поражения органов чувств ребенка, тем более трудной становится и учебно-воспитательная работа с ним. Подавляющая часть всей информации из окружающего мира (примерно 90%) поступает в наш мозг через зрительные и слуховые каналы, поэтому для нормального физического и психического развития детей и подростков особое значение имеют органы зрения и слуха.

Среди дефектов зрения наиболее часто встречаются различные формы нарушения рефракции оптической системы глаза или нарушения нормальной длины глазного яблока. В результате лучи, идущие от предмета, преломляются не на сетчатке. При слабой рефракции глаза вследствие нарушения функций хрусталика -его уплощения, или при укорочении глазного яблока, изображение предмета оказывается за сетчаткой. Люди с такими нарушениями зрения плохо видят близкие предметы; такой дефект называют дальнозоркостью (рис. 14.4.).

При усилении физической рефракции глаза, например, из-за повышения кривизны хрусталика, или удлинении глазного яблока, изображение предмета фокусируется впереди сетчатки, что нарушает восприятия удаленных предметов. Этот дефект зрения называют близорукостью (см. рис. 14.4.).

Рис. 14.4. Схема рефракции: в дальнозорком (а), нормальном (б) и близоруком (в) глазу

При развитии близорукости школьник плохо видит написанное на классной доске, просит пересадить его на первые парты. При чтении он приближает книгу к глазам, сильно склоняет голову во время письма, в кино или в театре стремится занять место поближе к экрану или сцене. При рассматривании предмета ребенок прищуривает глаза. Чтобы сделать изображение на сетчатке более четким, он чрезмерно приближает рассматриваемый предмет к глазам, что вызывает значительную нагрузку на мышечный аппарат глаза. Нередко мышцы не справляются с такой работой, и один глаз отклоняется в сторону виска - возникает косоглазие. Близорукость может развиваться при таких заболеваниях, как рахит, туберкулез, ревматизм.

Частичное нарушение цветового зрения получило название дальтонизма (по имени английского химика Дальтона, у которого впервые был обнаружен этот дефект). Дальтоники обычно не различают красный и зеленый цвета (они им кажутся серыми разных оттенков). Около 4-5% всех мужчин страдают дальтонизмом. У женщин он встречается реже (до 0,5%). Для обнаружения дальтонизма пользуются специальными цветовыми таблицами.

Профилактика нарушений зрения основывается на создании оптимальных условий для работы органа зрения. Зрительное утомление приводит к резкому снижению работоспособности детей, что отражается на их общем состоянии. Своевременная смена видов деятельности, изменение обстановки, в которой проводятся учебные занятия, способствуют повышению работоспособности.

Большое значение имеет правильный режим труда и отдыха, школьная мебель, отвечающая физиологическим особенностям учащихся, достаточное освещение рабочего места и др. Во время чтения каждые 40-60 мин необходимо делать перерыв на 10-15 мин, чтобы дать отдохнуть глазам; для снятия напряжения аппарата аккомодации детям рекомендуют посмотреть вдаль.

Кроме того, важная роль в охране зрения и его функции принадлежит защитному аппарату глаза (веки, ресницы), который требуют бережного ухода, соблюдения гигиенических требований и своевременного лечения. Неправильное использование косметических средств может привести к конъюнктивитам, блефаритам и другим заболеваниям органов зрения.

Особое внимание следует обратить на организацию работы с компьютерами, а также просмотр телевизионных передач. При подозрении на нарушение зрения необходима консультация врача - офтальмолога.

До 5 лет у детей преобладает гиперметропия (дальнозоркость). При данном дефекте помогают очки с собирательными двояковыпуклыми стеклами (придающими проходящим через них лучам сходящееся направление), которые улучшают остроту зрения и снижают излишнее напряжение аккомодации.

В дальнейшем в связи с нагрузкой при обучении частота гиперметропии снижается, а частота эмметропии (нормальной рефракции) и миопии (близорукости) увеличивается. К окончанию школы по сравнению с начальными классами распространенность близорукости возрастает в 5 раз.

Формированию и прогрессированию близорукости способствует дефицит света. Острота зрения и устойчивость ясного видения у учащихся существенно снижаются к окончанию уроков, и это снижение тем резче, чем ниже уровень освещенности. С повышением уровня освещенности у детей и подростков увеличивается быстрота различения зрительных стимулов, возрастает скорость чтения, улучшается качество работы. При освещенности рабочих мест 400 лк без ошибок было выполнено 74% работ, при освещенности 100 лк и 50 лк-соответственно 47 и 37%.

При хорошем освещении у нормально слышащих детей у подростков обостряется острота слуха, что также благоприятствует работоспособности, положительно сказывается на качестве работы. Так, если диктанты проводились при уровне освещенности 150 лк, число пропущенных или написанных с ошибками слов было на 47% меньше, чем в аналогичных диктантах, проведенных при освещенности 35 лк.

На развитие близорукости оказывает влияние учебная нагрузка, непосредственно связанная с необходимостью рассматривать объекты на близком расстоянии, ее продолжительность в течение дня.

Следует также знать, что у учащихся, мало бывающих или совсем не бывающих на воздухе в околополуденное время, когда интенсивность ультрафиолетовой радиации максимальна, нарушается фосфорно-кальциевый обмен. Это приводит к уменьшению тонуса глазных мышц, что при высокой зрительной нагрузке и недостаточной освещенности способствует развитию близорукости и ее прогрессированию.

Близорукими считаются дети, у которых миопическая рефракция составляет 3,25 диоптрий и выше, а острота зрения с коррекцией - 0,5-0,9. Таким учащимся рекомендованы занятия физической культурой только по специальной программе. Им также противопоказано выполнение тяжелой физической работы, длительное пребывание в согнутом положении с наклоненной головой.

При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, которые превращают параллельные лучи в расходящиеся. Близорукость в большинстве случаев врожденная, но она может увеличиваться в школьном возрасте от младших классов к старшим. В тяжелых случаях близорукость сопровождается изменениями сетчатки, что ведет к падению зрения и даже отслойке сетчатки. Поэтому детям, страдающим близорукостью, необходимо строго выполнять предписания окулиста. Своевременное ношение очков школьниками является обязательным.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

  • Введение 2
  • 1. Орган зрения 3
  • 8
  • 12
  • 13
  • Заключение 15
  • Литература 16

Введение

Актуальность темы нашей работы очевидна. Орган зрения, organum visus, играет важную роль в жизни человека, в его общении с внешней средой. В процессе эволюции этот орган прошел путь от светочувствительных клеток на поверхности тела животного до сложно устроенного органа, способного осуществлять движения в направлении пучка света и посылать этот пучок на специальное светочувствительные клетки в толще задней стенки глазного яблока, воспринимающие как черно-белое, так и цветное изображение. Достигнув совершенства, орган зрения у человека улавливает картины внешнего мира, трансформирует световое раздражение в нервный импульс.

Орган зрения расположен в глазнице и включает глаз и вспомогательные органы зрения. С возрастом происходят определенные изменения в органах зрения, что приводит к общему ухудшению самочувствия человека, к социальным и психологическим проблемам.

Цель нашей работы - выяснить, в чем заключаются возрастные изменения органов зрения.

Задача - изучить и проанализировать литературу по данной теме.

1. Орган зрения

Глаз, oculus (греч. ophthalmos), состоит из глазного яблока и зрительного нерва с его оболочками. Глазное яблоко, bulbus oculi, округлое. В нем выделяют полюса -- передний и задний, polus anterior et polus posterior. Первый соответствует наиболее выступающей точке роговицы, второй находится латеральнее места выхода из глазного яблока зрительного нерва. Линия, соединяющая эти точки, называется наружной осью глаза, axis bulbi externus. Она равна примерно 24 мм и находится в плоскости меридиана глазного яблока. Внутренняя ось глазного яблока, axis bulbi internus (от задней поверхности роговицы до сетчатки), составляет 21,75 мм. При наличии более длинной внутренней оси лучи света после преломления их в глазном яблоке собираются в фокусе впереди сетчатки. При этом хорошее видение предметов возможно только на близком расстояний -- близорукость, миопия (от греч. myops -- щурящий глаз). Фокусное расстояние у близоруких короче внутренней оси глазного яблока.

Если внутренняя ось глазного яблока относительно короткая, то лучи света после преломления собираются в фокусе позади сетчатки. Видение вдаль лучше, чем вблизи, -- дальнозоркость, гиперметропия (от греч. metron -- мера, ops -- род, opos -- зрение). Фокусное расстояние у дальнозорких длиннее внутренней оси глазного яблока.

Вертикальный размер глазного яблока составляет 23,5 мм, а поперечный -- 23,8 мм. Эти два размера находятся в плоскости экватора.

Выделяют зрительную ось глазного яблока, axis opticus, которая простирается от его переднего полюса до центральной ямки сетчатки -- точки наилучшего видения. (рис. 202).

Глазное яблоко состоит из оболочек, которые окружают ядро глаза (водянистая влага в передней и задней камерах, хрусталик, стекловидное тело). Выделяют три оболочки: наружную фиброзную, среднюю сосудистую и внутреннюю чувствительную.

Фиброзная оболочка глазного яблока, tunica fibrosa bulbi, выполняет защитную функцию. Передняя часть ее прозрачная и называется роговицей, а большая задняя часть из-за белесоватого цвета получила название белочной оболочки, или склеры. Границей между роговицей и склерой служит неглубокая циркулярная борозда склеры, sulcus sclerae.

Роговица, cornea, является одной из прозрачных сред глаза и лишена сосудов. Она имеет вид часового стекла, выпуклого спереди и вогнутого сзади. Диаметр роговицы -- 12 мм, толщина -- около 1 мм. Периферический край (лимб) роговицы, limbus corneae, как бы вставлен в передний отдел склеры, в которую переходит роговица.

Склера, sclera, состоит из плотной волокнистой соединительной ткани. В задней ее части имеются многочисленные отверстия, через которые выходят пучки волокон зрительного нерва и проходят сосуды. Толщина склеры у места выхода зрительного нерва составляет около 1 мм, а в области экватора глазного яблока и в переднем отделе -- 0,4-0,6 мм. На границе с роговицей в толще склеры залегают узкий круговой канал, заполненный венозной кровью, -- венозный синус склеры, sinus venosus sclerae (шлеммов канал).

Сосудистая оболочка глазного яблока, tunica vasculosa bulbi, богата кровеносными сосудами и пигментом. Она непосредственно прилежит с внутренней стороны к склере, с которой прочно сращена у места выхода из глазного яблока зрительного нерва и у границы склеры с роговицей. В сосудистой оболочке выделяют три части: собственно сосудистую оболочку, ресничное тело и радужку.

Собственно сосудистая оболочка, choroidea, выстилает большую заднюю часть склеры, с которой, кроме указанных мест, сращена рыхло, ограничивая изнутри имеющееся между оболочками так называемое околососудистое пространство, spatium perichoroideale.

Ресничное тело, corpus ciliare, представляет собой средний утолщенный отдел сосудистой оболочки, расположенный в виде кругового валика в области перехода роговицы в склеру, позади радужки. С наружным ресничным краем радужки ресничное тело сращено. Задняя часть ресничного тела -- ресничный кружок, orbiculus ciliaris, имеет вид утолщенной циркулярной полоски шириной 4 мм, переходит в собственно сосудистую оболочку. Передняя часть ресничного тела образует около 70 радиарно ориентированных утолщенных на концах складок длиной до 3 мм каждая -- ресничные отростки, processus ciliares. Эти отростки состоят в основном из кровеносных сосудов и составляют ресничный венец, corona ciliaris.

В толще ресничного тела залегает ресничная мышца, m. ciliaris, состоящая из сложно переплетающихся пучков гладких мышечных клеток. При сокращении мышцы происходит аккомодация глаза -- приспособление к четкому видению предметов, находящихся на различном расстоянии. В ресничной мышце выделяют меридиональные, циркулярные и радиарные пучки неисчерченных (гладких) мышечных клеток. Меридиональные (продольные) волокна, fibrae meridionales (longitudinales), этой мышцы берут начало от края роговицы и от склеры и вплетаются в переднюю часть собственно сосудистой оболочки. При их сокращении оболочка смещается кпереди, в результате чего уменьшается натяжение ресничного пояска, zonula ciliaris, на котором укреплен хрусталик. Капсула хрусталика при этом расслабляется, хрусталик изменяет свою кривизну, становится более выпуклым, а его преломляющая способность увеличивается. Циркулярные волокна, fibrae circulares, начинающиеся вместе с меридиональными волокнами, расположены кнутри от последних в циркулярном направлении. При своем сокращении суживают цилиарное тело, приближая его к хрусталику, что также способствует расслаблению капсулы хрусталика. Радиальные волокна, fibrae radiales, начинаются от роговицы и склеры в области радужно-роговичного угла, располагаются между меридиональными и циркулярными пучками ресничной мышцы, сближая эти пучки при своем сокращении. Присутствующие в толще цилиарного тела эластические волокна расправляют цилиарное тело при расслаблении его мышцы.

Радужка, iris, -- самая передняя часть сосудистой оболочки, видимая через прозрачную роговицу. Она имеет вид диска толщиной около 0,4 мм, поставленного во фронтальной плоскости. В центре радужки имеется круглое отверстие -- зрачок, рuрillа. Диаметр зрачка непостоянный: зрачок суживается при сильном освещении и расширяется в темноте, выполняя роль диафрагмы глазного яблока. Зрачок ограничен зрачковым краем радужки, margo pupillaris. Наружный ресничный край, margo ciliaris, соединяется с ресничным телом и со склерой при помощи гребенчатой связки, lig. pectinatum iridis (BNA). Эта связка заполняет образованный радужкой и роговицей радужно-роговичный угол, angulus iridocornealis. Передняя поверхность радужки обращена в сторону передней камеры глазного яблока, а задняя -- к задней камере и хрусталику. В соединительнотканной строме радужки располагаются кровеносные сосуды. Клетки заднего эпителия богаты пигментом, от количества которого зависит цвет радужки (глаза). При наличии большого количества пигмента цвет глаза темный (коричневый, карий) или почти черный. Если пигмента мало, то радужка будет иметь светло-серый или светло-голубой цвет. При отсутствии пигмента (альбиносы) радужка красноватого цвета, так как сквозь нее просвечивают кровеносные сосуды. В толще радужки лежат две мышцы. Вокруг зрачка циркулярно расположены пучки гладких мышечных клеток -- сфинктер зрачка, m. sphincter pupillae, а радиально от ресничного края радужки до ее зрачкового края простираются тонкие пучки мышцы, расширяющей зрачок, m. dilatator pupillae (расширитель зрачка).

Внутренняя (чувствительная) оболочка глазного яблока (сетчатка), tunica interna (sensoria) bulbi (retina), плотно прилежит с внутренней стороны к сосудистой оболочке на всем ее протяжении, от места выхода зрительного нерва до края зрачка. В сетчатке, развивающейся из стенки переднего мозгового пузыря, выделяют два слоя (листка): наружную пигментную часть, pars pigmentosa, и сложно устроенную внутреннюю светочувствительную, получившую название нервной части, pars nervosa. Соответственно функции выделяют большую заднюю зрительную часть сетчатки, pars optica retinae, содержащую чувствительные элементы -- палочковидные и колбочковидные зрительные клетки (палочки и колбочки), и меньшую -- "слепую" часть сетчатки, лишенную палочек и колбочек. "Слепая" часть сетчатки объединяет ресничную часть сетчатки, pars ciliaris retinae, и радужковую часть сетчатки, pars iridica retinae. Границей между зрительной и "слепой" частями является хорошо видимый на препарате вскрытого глазного яблока зубчатый край, ora serrata. Он соответствует месту перехода собственно сосудистой оболочки в ресничный кружок, orbiculus ciliaris, сосудистой оболочки.

В заднем отделе сетчатки на дне глазного яблока у живого человека с помощью офтальмоскопа можно видеть беловатого цвета пятно диаметром около 1,7 мм -- диск зрительного нерва, discus nervi optici, с приподнятыми в виде валика краями и небольшим углублением, excavatio disci, в центре (рис. 203).

Диск является местом выхода из глазного яблока волокон зрительного нерва. Последний, будучи окружен оболочками (продолжение оболочек головного мозга), образующими наружное и внутреннее влагалища зрительного нерва, vagina externa et vagina interna n. optici, направляется в сторону зрительного канала, открывающегося в полость черепа. Вследствие отсутствия светочувствительных зрительных клеток (палочек и колбочек) область диска называют слепым пятном. В центре диска видна входящая в сетчатку ее центральная артерия, a. centralis retinae. Латеральнее диска зрительного нерва примерно на 4 мм, что соответствует заднему полюсу глаза, находится желтоватого цвета пятно, macula, с небольшим углублением -- центральной ямкой, fovea centralis. Центральная ямка является местом наилучшего видения: здесь сосредоточены только колбочки. Палочки в этом месте отсутствуют.

Внутренняя часть глазного яблока заполнена водянистой влагой, находящейся в передней и задней камерах глазного яблока, хрусталиком и стекловидным телом. Вместе с роговицей все эти образования являются светопреломляющими средами глазного яблока. Передняя камера глазного яблока, camera anterior bulbi, содержащая водянистую влагу, humor aquosus, находится между роговицей спереди и передней поверхностью радужки сзади. Через отверстие зрачка передняя камера сообщается с задней камерой глазного яблока, camera posterior bulbi, которая расположена позади радужки и ограничена сзади хрусталиком. Задняя камера сообщается с пространствами между волокнами хрусталика, fibrae zonulares, соединяющими сумку хрусталика с ресничным телом. Пространства пояска, spatia zonularia, имеют вид круговой щели (петитов канал), лежащей по периферии хрусталика. Они, так же как и задняя камера, заполнены водянистой влагой, которая образуется при участии многочисленных кровеносных сосудов и капилляров, залегающих в толще ресничного тела.

Расположенный позади камер глазного яблока хрусталик, lens, имеет форму двояковыпуклой линзы и обладает большой светопреломляющей способностью. Передняя поверхность хрусталика, facies anterior lentis, и наиболее выступающая ее точка -- передний полюс, polus anterior, обращены в сторону задней камеры глазного яблока. Более выпуклая задняя поверхность, facies posterior, и задний полюс хрусталика, polus posterior lentis, прилежат к передней поверхности стекловидного тела. Стекловидное тело, corpus vitreum, покрытое по периферии мембраной, находится в стекловидной камере глазного яблока, camera vitrea bulbi, позади хрусталика, где плотно прилежит к внутренней поверхности сетчатки. Хрусталик как бы вдавлен в переднюю часть стекловидного тела, которое в этом месте имеет углубление, получившее название стекловидной ямки, fossa hyaloidea. Стекловидное тело представляет собой желеобразную массу, прозрачную, лишенную сосудов и нервов. Преломляющая способность стекловидного тела близка к показателю преломления водянистой влаги, заполняющей камеры глаза.

2. Развитие и возрастные особенности органа зрения

Орган зрения в филогенезе проделал путь от отдельных эктодермального происхождения светочувствительных клеток (у кишечно-полостных) до сложно устроенных парных глаз у млекопитающих. У позвоночных животных глаза развиваются сложно: из боковых выростов мозга образуется светочувствительная оболочка -- сетчатка. Средняя и наружная оболочки глазного яблока, стекловидное тело формируются из мезодермы (среднего зародышевого листка), хрусталик -- из эктодермы.

Внутренняя оболочка (сетчатка) по форме напоминает двухстенный бокал. Из тонкой наружной стенки бокала развивается пигментная часть (слой) сетчатки. Зрительные (фоторецепторные, светочувствительные) клетки находятся в более толстом внутреннем слое бокала. У рыб дифференцировка зрительных клеток на палочковидные (палочки) и колбочковидные (колбочки) выражена слабо, у рептилий имеются одни колбочки, у млекопитающих в сетчатке находятся преимущественно палочки; у водных и ночных животных колбочки в сетчатке отсутствуют. В составе средней (сосудистой) оболочки уже у рыб начинает формироваться ресничное тело, усложняющееся в своем развитии у птиц и млекопитающих. Мышцы в радужке и в ресничном теле впервые появляются у амфибий. Наружная оболочка глазного яблока у низших позвоночных состоит преимущественно из хрящевой ткани (у рыб, частично у амфибий, у большинства ящерообразных и однопроходных). У млекопитающих она построена только из волокнистой (фиброзной) ткани. Передняя часть фиброзной оболочки (роговица) прозрачная. Хрусталик у рыб, амфибий округлый. Аккомодация достигается вследствие перемещения хрусталика и сокращения особой передвигающей хрусталик мышцы. У рептилий и птиц хрусталик способен не только перемещаться, но и изменять свою кривизну. У млекопитающих хрусталик занимает постоянное место, аккомодация осуществляется вследствие изменения кривизны хрусталика. Стекловидное тело, имеющее вначале волокнистую структуру, постепенно становится прозрачным.

Одновременно с усложнением строения глазного яблока развиваются вспомогательные органы глаза. Первыми появляются шесть глазодвигательных мышц, преобразующихся из миотомов трех пар головных сомитов. Веки начинают формироваться у рыб в виде одной кольцевидной кожной складки. У наземных позвоночных животных образуются верхние и нижние веки, а у большинства из них у медиального угла глаза имеется также мигательная перепонка (третье веко). У обезьян и человека остатки этой перепонки сохраняются в виде полулунной складки конъюнктивы. У наземных позвоночных животных развивается слезная железа, формируется слезный аппарат.

Глазное яблоко у человека также развивается из нескольких источников. Светочувствительная оболочка (сетчатка) происходит из боковой стенки мозгового пузыря (будущий промежуточный мозг); главная линза глаза -- хрусталик -- непосредственно из эктодермы; сосудистая и фиброзная оболочки -- из мезенхимы. На ранней стадии развития зародыша (конец 1-го, начало 2-го месяца внутриутробной жизни) на боковых стенках первичного мозгового пузыря (prosencephalon) появляется небольшое парное выпячивание -- глазные пузыри. Концевые отделы их расширяются, растут в сторону эктодермы, а соединяющие с мозгом ножки суживаются и в дальнейшем превращаются в зрительные нервы. В процессе развития стенка глазного пузыря впячивается внутрь его и пузырь превращается в двухслойный глазной бокал. Наружная стенка бокала в дальнейшем истончается и трансформируется в наружную пигментную часть (слой), а из внутренней стенки образуется сложно устроенная световоспринимающая (нервная) часть сетчатки (фотосенсорный слой). На стадии формирования глазного бокала и дифференцировки его стенок, на 2-м месяце внутриутробного развития, прилежащая к глазному бокалу спереди эктодерма вначале утолщается, а затем образуется хрусталиковая ямка, превращающаяся в хрусталиковый пузырек. Отделившись от эктодермы, пузырек погружается внутрь глазного бокала, теряет полость и из него в дальнейшем формируется хрусталик.

На 2-м месяце внутриутробной жизни в глазной бокал через образовавшуюся на нижней его стороне щель проникают мезенхимные клетки. Эти клетки образуют внутри бокала кровеносную сосудистую сеть в формирующемся здесь стекловидном теле и вокруг растущего хрусталика. Из прилежащих к глазному бокалу мезенхимных клеток образуется сосудистая оболочка, а из наружных слоев -- фиброзная оболочка. Передняя часть фиброзной оболочки становится прозрачной и превращается в роговицу. У плода 6-8 мес. кровеносные сосуды, находящиеся в капсуле хрусталика и в стекловидном теле, исчезают; рассасывается мембрана, закрывающая отверстие зрачка (зрачковая мембрана).

Верхние и нижние веки начинают формироваться на 3-м месяце внутриутробной жизни, вначале в виде складок эктодермы. Эпителий конъюнктивы, в том числе и покрывающий спереди роговицу, происходит из эктодермы. Слезная железа развивается из выростов конъюнктивального эпителия, появляющихся на 3-м месяце внутриутробной жизни в латеральной части формирующегося верхнего века.

Глазное яблоко у новорожденного относительно большое, его переднезадний размер 17,5 мм, масса -- 2,3 г. Зрительная ось глазного яблока проходит латеральнее, чем у взрослого человека. Растет глазное яблоко на первом году жизни ребенка быстрее, чем в последующие годы. К 5 годам масса глазного яблока увеличивается на 70%, а к 20-25 годам -- в 3 раза по сравнению с новорожденным.

Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется; хрусталик почти круглый, радиусы его передней и задней кривизны примерно равны. Особенно быстро растет хрусталик в течение 1-го года жизни, в дальнейшем темпы роста его снижаются. Радужка выпуклая кпереди, пигмента в ней мало, диаметр зрачка равен 2,5 мм. По мере увеличения возраста ребенка толщина радужки увеличивается, количество пигмента в ней возрастает, диаметр зрачка становится большим. В возрасте 40-50 лет зрачок немного суживается.

Ресничное тело у новорожденного развито слабо. Рост и дифференцировка ресничной мышцы осуществляются довольно быстро. Зрительный нерв у новорожденного тонкий (0,8 мм), короткий. К 20 годам жизни диаметр его возрастает почти вдвое.

Мышцы глазного яблока у новорожденного развиты достаточно хорошо, кроме их сухожильной части. Поэтому движение глаза возможно сразу после рождения, однако координация этих движений наступает со 2-го месяца жизни ребенка.

Слезная железа у новорожденного имеет небольшие размеры, выводные канальцы железы тонкие. Функция слезоотделения появляется на 2-м месяце жизни ребенка. Влагалище глазного яблока у новорожденного и детей грудного возраста тонкое, жировое тело глазницы развито слабо. У людей пожилого и старческого возраста жировое тело глазницы уменьшается в размерах, частично атрофируется, глазное яблоко меньше выступает из глазницы.

Глазная щель у новорожденного узкая, медиальный угол глаза закруглен. В дальнейшем глазная щель быстро увеличивается. У детей до 14-15 лет она широкая, поэтому глаз кажется большим, чем у взрослого человека.

3. Аномалии развития глазного яблока

Сложное развитие глазного яблока приводит к появлению врожденных дефектов. Чаще других встречается неправильная кривизна роговицы или хрусталика, вследствие чего изображение на сетчатке искажается (астигматизм). При нарушенных пропорциях глазного яблока появляются врожденные близорукость (зрительная ось удлинена) или дальнозоркость (зрительная ось укорочена). Щель в радужке (колобома) чаще бывает в переднемедиальном ее сегменте.

Остатки ветвей артерии стекловидного тела мешают прохождению света в стекловидном теле. Иногда встречается нарушение прозрачности хрусталика (врожденная катаракта). Недоразвитие венозного синуса склеры (шлеммов канала) или пространств радужно-роговичного угла (фонтановы пространства) вызывает врожденную глаукому.

4. Определение остроты зрения и его возрастных особенностей

Острота зрения отражает способность оптической системы глаза строить четкое изображение на сетчатке, то есть характеризует пространственную разрешающую способность глаза. Она измеряется путем определения наименьшего расстояния между двумя точками, достаточного для того, чтобы они не сливались, чтобы лучи от них попадали на разные рецепторы сетчатки.

Мерилом остроты зрения служит угол, который образуется между лучами, идущими от двух точек предмета к глазу, - угол зрения. Чем меньше этот угол, тем выше острота зрения. В норме этот угол равен 1 минуте (1"), или 1 единице. У некоторых людей острота зрения может быть меньше единицы. При нарушениях зрения (например, при близорукости) острота ухудшается и становится больше единицы.

С возрастом острота зрения повышается.

Таблица 12. Возрастные изменения остроты зрения при нормальных преломляющих свойствах глаза.

Острота зрения (в усл. Ед.)

6 месяцев

Взрослые

В таблице горизонтально расположены параллельные ряды букв, размер которых уменьшается от верхнего ряда к нижнему. Для каждого ряда определено расстояние, с которого две точки, ограничивающие каждую букву, воспринимаются под углом зрения в 1". Буквы самого верхнего ряда воспринимаются нормальным глазом с расстояния 50 метров, а нижнего - 5 метров. Для определения остроты зрения в относительных единицах расстояние, с которого испытуемый может прочитать строку, делится на расстояние, с которого она должна читаться при условии нормального зрения.

Опыт проводится следующим образом.

Посадите испытуемого на расстоянии 5 метров от таблицы, которая должна быть хорошо освящена. Закройте один глаз испытуемого экраном. Попросите испытуемого назвать буквы в таблице в направлении сверху вниз. Отметьте последнюю из строчек, которую испытуемый смог правильно прочитать. Делением расстояния, на котором находится испытуемый от таблицы (5 метров), на расстояние, с которого он прочитал последнюю из различаемых им строк (например, 10 метров), найдите остроту зрения. Для данного примера: 5 / 10 = 0,5.

Протокол исследования.

Острота зрения для правого глаза (в усл. ед.)

Острота зрения для левого глаза (в усл. ед.)

Заключение

Итак, в ходе написания нашей работы, мы пришли к следующим выводам:

- Орган зрения развивается и изменяется с возрастом человека.

Сложное развитие глазного яблока приводит к появлению врожденных дефектов. Чаще других встречается неправильная кривизна роговицы или хрусталика, вследствие чего изображение на сетчатке искажается (астигматизм). При нарушенных пропорциях глазного яблока появляются врожденные близорукость (зрительная ось удлинена) или дальнозоркость (зрительная ось укорочена).

Мерилом остроты зрения служит угол, который образуется между лучами, идущими от двух точек предмета к глазу, - угол зрения. Чем меньше этот угол, тем выше острота зрения. В норме этот угол равен 1 минуте (1"), или 1 единице. У некоторых людей острота зрения может быть меньше единицы. При нарушениях зрения (например, при близорукости) острота ухудшается и становится больше единицы.

Возрастные изменения органа зрения необходимо изучать и контролировать, так как зрения - одно из важнейших чувств человека.

Литература

1. М.Р.Гусева, И.М.Мосин, Т.М.Цховребов, И.И.Бушев. Особенности течения невритов зрительного нерва у детей. Тез. 3 Всесоюзной конференции по актуальным вопросам детской офтальмологии. М.1989; с.136-138

2. Е.И.Сидоренко, М.Р Гусева, Л.А. Дубовская. Церебролизиан в лечении частичных атрофии зрительного нерва у детей. Ж. Невропатологии и психиатрии. 1995; 95: 51-54.

3. М.Р.Гусева, М.Е.Гусева, О.И.Маслова. Результаты исследования иммунного статуса у детей с невритами зрительного нерва и рядом демиелинизирующих состояний. Кн. Возрастные особенности органа зрения в норме и при патологи. М., 1992, с.58-61

4. Е.И.Сидоренко, А.В.Хватова, М.Р.Гусева. Диагностика и лечение оптических невритов у детей. Методические рекомендации. М., 1992, 22 с.

5. М.Р.Гусева, Л.И.Фильчикова, И.М.Мосин и соавт. Электрофизиологические методы в оценке риска развития рассеянного склероза у детей и подростков с моносимптомным оптическим невритом Ж.Невропатологии и психиатрии. 1993; 93: 64-68.

6. И.А.Завалишин, М.Н.Захарова, А.Н.Дзюба и соавт. Патогенез ретробульбарного неврита. Ж. Невропатологии и Психиатрии. 1992; 92: 3-5.

7. И.М.Мосин. Дифференциальная и топическая диагностика оптических невритов у детей. Дис.канд.мед.наук (14.00.13) Моск.НИИ глазных болезней им. Гельмгольца М.,1994, 256 с,

8. М.Е.Гусева Клинико-параклинические критерии демиелинизирующих заболеваний у детей. Автореферат дисс.к.м.н., 1994

9. М.Р.Гусева Диагностика и патогенетическая терапия увеитов у детей. Дисс. докт.мед.наук в форме научного доклада. М.1996, 63с.

10. И.З.Карлова Клинико-иммунологические особенности оптического неврита при рассеянном склерозе. Автореферат дисс.к.м.н., 1997

Подобные документы

    Элементы, составляющие орган зрения (глаз), их соединение с головным мозгом через зрительный нерв. Топография и форма глазного яблока, особенности его строения. Характеристика фиброзной оболочки и склеры. Гистологические слои, составляющие роговицу.

    презентация , добавлен 05.05.2017

    Изучение возрастных особенностей зрения: рефлексов, световой чувствительности, остроты зрения, аккомодации и конвергенции. Анализ роли выделительной системы в поддержании постоянства внутренней среды организма. Анализ развития цветового зрения у детей.

    контрольная работа , добавлен 08.06.2011

    Зрительный анализатор. Основной и вспомогательный аппарат. Верхнее и нижнее веко. Строение глазного яблока. Вспомогательный аппарат глаза. Цвета радужной оболочки глаз. Аккомодация и конвергенция. Слуховой анализатор - наружное, среднее и внутреннее ухо.

    презентация , добавлен 16.02.2015

    Внешнее и внутреннее строение глаза, рассмотрение функций слезных желез. Сравнение органов зрения у человека и животных. Визуальная зона коры больших полушарий и понятие аккомодации и светочувствительности. Зависимость цветового зрения от сетчатки.

    презентация , добавлен 14.01.2011

    Схема горизонтального сечения правого глаза человека. Оптические недостатки глаза и аномалии рефракции. Сосудистая оболочка глазного яблока. Вспомогательные органы глаза. Гиперметропия и ее коррекция с помощью выпуклой линзы. Определение угла зрения.

    реферат , добавлен 22.04.2014

    Понятие об анализаторе. Строение глаза, его развитие после рождения. Острота зрения, близорукость и дальнозоркость, профилактика этих заболеваний. Бинокулярное зрение, развитие пространственного зрения у детей. Гигиеническое требование к освещению.

    контрольная работа , добавлен 20.10.2009

    Значение зрения для человека. Внешнее строение зрительного анализатора. Радужная оболочка глаза, слезный аппарат, расположение и строение глазного яблока. Строение сетчатки, оптическая система глаза. Бинокулярное зрение, схема движения взгляда.

    презентация , добавлен 21.11.2013

    Острота зрения у кошек, соотношение размеров головы и глаз, их строение: сетчатка, роговая оболочка, передняя глазная камера, зрачок, линза хрусталика и стекловидное тело. Преобразование падающего света в нервные сигналы. Признаки нарушения зрения.

    реферат , добавлен 01.03.2011

    Понятие об анализаторах, их роль в познании окружающего мира, свойства и внутреннее строение. Строение органов зрения и зрительного анализатора, его функции. Причины нарушения зрения у детей и последствия. Требования к оснащенности в учебных помещениях.

    контрольная работа , добавлен 31.01.2017

    Изучение глазного яблока, органа, отвечающего за ориентацию лучей света, преобразование их в нервные импульсы. Исследование особенностей фиброзной, сосудистой и сетчатой оболочек глаза. Строение цилиарного и стекловидного тел, радужки. Слезные органы.

Зрительные функции - это комплекс отдельных компонентов зрительного акта, позволяющих ориентироваться в пространстве, воспринимать форму и цвет предметов, видеть их на разном расстоянии при ярком свете и в сумерках.

Принято различать пять основных зрительных функций: центральное или форменное зрение, периферическое зрение, светоощущение, цветоощущение и бинокулярное зрение.

Центральное зрение.

Центральное зрение осуществляется колбочковым аппаратом сетчатки. Важной его особенностью является восприятие формы предметов. Поэтому эта функция называется форменным зрением.

Состояние центрального зрения определяется остротой зрения.

Острота зрения

Остроту зрения определяет способность глаза воспринимать мелкие детали на большом расстоянии или различать две точки, расположенные на минимальном расстоянии друг от друга. Чем меньше деталь, которую различает глаз, или чем больше расстояние, с которого видна эта деталь, тем выше острота зрения и, наоборот, чем больше деталь и меньше расстояние, тем она ниже.

Для исследования остроты зрения применяют таблицы, содержащие несколько рядов специально подобранных знаков, которые называются оптотипами. В качестве оптотипов используют буквы, цифры, крючки, полосы и рисунки и т.п.

Для обследования грамотных и неграмотных людей разных национальностей Ландольт предложил использовать в качестве оптотипа незамкнутые кольца разной величины. В 1909 г. на XI Международном конгрессе офтальмологов кольца Ландольта были приняты в качестве интернационального оптотипа. Они входят в большинство современных таблиц.

В нашей стране наиболее распространена таблица Головина - Сивцева.

При более низкой остроте зрения предлагают различить пальцы или движения руки исследующего. Различение их с расстояния 30 см соответствует остроте зрения, равной 0,001.

Когда зрение так мало, что глаз не различает предметов, а воспринимает только свет, остроту зрения считают равной светоощущению.

Если исследуемый не ощущает даже света, то его острота зрения равна нулю.

Острота зрения у детей претерпевает определенную эволюцию и достигает максимума к 6 - 7 годам.

Степень понижения остроты зрения является одним из основных признаков, по которому дети направляются в дошкольные учреждения и школы для слабовидящих или слепых.

Наряду с таблицами для исследования остроты зрения используют и другие устройства, в т.ч. переносные. К ним относят:

· транспарантные приборы, в которых тестовые знаки, нанесенные на полупрозрачную пластину, освещаются расположенным внутри прибора источником света;

· проекционные приборы (проекторы), с помощью которых тестовые знаки проецируются с диапозитивов на отражающий экран;

· коллиматорные приборы, которые содержат тестовые знаки на диапозитивах и специальную оптическую систему, создающую их изображение в бесконечности, что позволяет располагать предъявляемые знаки в непосредственной близости к исследуемому глазу.

При помутнениях оптических сред глаза определяют ретинальную остроту зрения. С этой целью используют интерференционные ретинометры, например лазерные. С помощью когерентного источника света на сетчатке глаза вызывают изображение решетки, образованной чередующимися светлыми и темными полосами, ширину которых можно произвольно менять. По минимальному расстоянию между полосами судят о состоянии зрения. Этот метод позволяет определить остроту зрения в пределах 0,03 - 1,33.

Глазное яблоко у человека развивается из нескольких источ­ников. Светочувствительная оболочка (сетчатка) происходит из боковой стенки мозгового пузыря (будущий промежуточный мозг), хрусталик - из эктодермы, сосудистая и фиброзная обо­лочка - из мезенхимы. В конце 1-го - начале 2-го месяца внут­риутробной жизни на боковых стенках первичного мозгового пузыря появляется небольшое парное выпячивание - глазные пузыри. В процессе развития стенка глазного пузыря впячива­ется внутрь его и пузырь превращается в двухслойный глазной бокал. Наружная стенка бокала в дальнейшем истончается и пре­образуется в наружную пигментную часть (слой). Из внутренней стенки этого пузыря образуется сложно устроенная световоспринимающая (нервная) часть сетчатки (фотосенсорный слой). На 2-м месяце внутриутробного развития прилежащая к глазно­му бокалу эктодерма утолщается, затем в ней образуется хрусталиковая ямка, превращающаяся в хрустальный пузырек. Отде­лившись от эктодермы, пузырек погружается внутрь глазного бокала, теряет полость и из него в дальнейшем формируется хру­сталик.

На 2-м месяце внутриутробной жизни в глазной бокал прони­кают мезенхимные клетки, из которых образуются внутри бока­ла кровеносная сосудистая сеть и стекловидное тело. Из приле­жащих к глазному бокалу мезенхимных клеток образуется сосу­дистая оболочка, а из наружных слоев - фиброзная оболочка. Пе­редняя часть фиброзной оболочки становится прозрачной и пре­вращается в роговицу. У плода 6 - 8 мес кровеносные сосуды, на­ходящиеся в капсуле хрусталика и стекловидном теле, исчезают; рассасывается мембрана, закрывающая отверстие зрачка (зрачко­вая мембрана).

Верхние и нижние веки начинают формироваться на 3-м ме­сяце внутриутробной жизни, вначале в виде складок эктодермы. Эпителий конъюнктивы, в том числе и покрывающий спереди роговицу, происходит из эктодермы. Слезная железа развивается из выростов конъюнктивального эпителия в латеральном части формирующегося верхнего века.

Глазное яблоко у новорожденного относительно большое, его переднезадний размер составляет 17,5 мм, масса - 2,3 г. К 5 годам масса глазного яблока увеличивается на 70 %, а к 20 - 25 го­дам - в 3 раза по сравнению с новорожденным.

Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется. Хрусталик почти круглый. Особенно быстро растет хрусталик в течение 1-го года жизни, в дальнейшем темпы роста его снижаются. Радужка выпуклая кпе­реди, пигмента в ней мало, диаметр зрачка 2,5 мм. По мере уве­личения возраста ребенка толщина радужки увеличивается, ко­личество пигмента в ней возрастает, диаметр зрачка становится большим. В возрасте 40 - 50 лет зрачок немного суживается.



Ресничное тело у новорожденного развито слабо. Рост и дифференцировка ресничной мышцы осуществляется довольно быстро.

Мышцы глазного яблока у новорожденного развиты достаточ­но хорошо, кроме их сухожильной части. Поэтому движение гла­за возможно сразу после рождения, однако координация этих дви­жений наступает со 2-го месяца жизни ребенка.

Слезная железа у новорожденного имеет небольшие размеры, выводные канальцы железы тонкие. Функция слезоотделения по­является на 2-м месяце жизни ребенка.

Жировое тело глазницы развито слабо. У людей пожилого и старческого возраста жировое тело глазницы уменьшается в раз­мерах, частично атрофируется, глазное яблоко меньше выступа­ет из глазницы.

Глазная щель у новорожденного узкая, медиальный угол глаза закруглен. В дальнейшем глазная щель быстро увеличивается. Удетей до 14 -15 лет она широкая, поэтому глаз кажется боль­шим, чем у взрослого человека.

Сложное развитие глазного яблока приводит к появлению врожденных дефектов. Чаще других встречается неправильная кривизна роговицы или хрусталика, вследствие чего изображение на сетчатке искажается (астигматизм). При нарушенных пропор­циях глазного яблока появляются врожденные близорукость (зри­тельная ось удлинена) или дальнозоркость (зрительная ось уко­рочена). Щель в радужке (колобома) чаще бывает в переднемедиальном ее сегменте. Остатки ветвей артерии стекловидного тела мешают прохождению света в стекловидном теле. Иногда встреча­ется нарушение прозрачности хрусталика (врожденная катаракта). Недоразвитие венозного синуса склеры (пглеммов канал) или про­странств радужно-роговичного угла (фонтановых пространств) вызывает врожденную глаукому.



Контрольные вопросы

1. Перечислите органы чувств, дайте каждому из них функциональную характеристику.

2.Расскажите о строении оболочек глазного яблока.

3.Назовите структуры, относящиеся к прозрачным средам глаза

4.Перечислите органы, которые относятся к вспомогателен аппаратам глаза. Какие функции выполняет каждый из вспомогательных органов глаза?

5.Расскажите о строении и функциях аккомодационною аппарата
глаза.

6.Опишите проводящий путь зрительного анализатора от рецепторов, воспринимающих свет, до коры большого мозга.

7.Расскажите об адаптации глаза к свету и о цветовом зрении

ОРГАНЫ СЛУХА И РАВНОВЕСИЯ (ПРЕДДВЕРНО-УЛИТКОВЫЙ ОРГАН)

Органы слуха и равновесия, выполняющие разные функции, объединены в сложную систему (рис. 108).

Орган равновесия находится внутри каменистой части (пирамиды) височной кости и играет важную роль в ориентации чевека в пространстве.

Рис. 108. Преддверно-улитковый орган:

1 - ушная раковина; 2 - наружный слуховой проход; 3 - барабанная перепонка; 4 - барабанная полость; 5 - молоточек; 6 - наковальня; 7 -стремя, 8- полукружные протоки; 9 - преддверие; 10 - улитка; 11 - прг-i улитковый нерв; 12 - слуховая труба



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух