Попадание в организм чужеродных веществ. Превращение токсичных веществ в организме. Ферменты и их индукция

Попадание в организм чужеродных веществ. Превращение токсичных веществ в организме. Ферменты и их индукция


A. фагоциты

B. тромбоциты

C. ферменты

D. гормоны

E. эритроциты

371. Заболевание СПИДом может привести:

A. к полному разрушению иммунной системы организма

B. к несвертываемости крови

C. к понижению содержания тромбоцитов

D. к резкому повышению содержания тромбоцитов в крови

E. к понижению гемоглобина в крови и развитию малокровия

372. Предупредительные прививки защищают от:

A. большинства инфекционных заболеваний

B. любых заболеваний

C. ВИЧ- инфекции и СПИДа

D. хронических заболеваний

E. аутоиммунных заболеваний

373. При предупредительной прививке в организм вводится:

A. убитые или ослабленные микроорганизмы

B. готовые антитела

C. лейкоциты

D. антибиотики

E. гормоны

374 Кровь 3 группы можно переливать людям с:

A. 3 и 4 группой крови

B. 1 и 3 группой крови

C. 2 и 4 группой крови

D. 1 и 2 группой крови

E. 1 и 4 группой крови

375. Какие вещества обезвреживают в организме человека и животных чужеродные тела и их яды?

A. антитела

B. ферменты

C. антибиотики

D. гормоны

376. Пассивный искусственный иммунитет возникает у человека, если ему в кровь вводят:

A. фагоциты и лимфоциты

B. ослабленных возбудителей болезни

C. готовые антитела

D. ферменты

E. эритроциты и тромбоциты

377. Кто первым изучил в 1880–1885 гг. получил вакцины против куриной холеры, сибирской язвы и бешенства:

A. Л. Пастер

B. И.П. Павлов

C. И.М. Сеченов

D. А.А. Ухтомский

E. Н.К Кольцов

378. Биопрепараты для создания у людей иммунитета к инфекционным заболеваниям?

A. Вакцины

B. Ферменты

D. Гормоны

E. Сыворотки

379. Живые вакцины содержат:

A. Ослабленные бактерии или вирусы

B. Ферменты

D. Антитоксины

E. Гормоны

380. Анатоксины:

A. Мало реактогенны, способны формировать напряженный иммунитет на 4–5 лет.

381. Фаги:

A. Представляют собой вирусы, способные проникать в бактериальную клетку, репродуцироваться и вызывать ее лизис.

B. Представляют собой химические вакцины.

C. Применяются для профилактики брюшного тифа, паратифов А и В

D. Используются для профилактики тифа, паратифов, коклюша, холеры

E. Более иммуногенны, создают иммунитет высокой напряженности

382. Применяются для фагопрофилактики и фаготерапии инфекционных заболеваний:

A. Бактериофаги

B. Антитоксины

C. Живые вакцины

D. Полные антигены

E. Убитые вакцины

383. Мероприятие, направленное на поддержание иммунитета, выработанного предыдущими вакцинациями :

A. Ревакцинация

B. Вакцинация населения

C. Бактериальная контоминация

D. Стабилизация

E. Ферментация

384. На развитие поствакцинального иммунитета влияют следующие факторы, зависящие от самой вакцины:

A. Все ответы верны

B. чистота препарата;

C. время жизни антигена;

E. наличие протективных антигенов;

Под термином «иммунитет» (от лат. immunitas - избавление от чего-либо) подразумевают невосприимчивость организма к инфекционным и неинфекционным агентам. Организмы животных и людей весьма четко дифференцируют «свое» и «чужое», благодаря чему обеспечивается защита не только от внедрения патогенных микроорганизмов, но и от чужеродных белков, полисахаридов, липополисахаридов и других веществ.

Защитные факторы организма против инфекционных агентов и других чужеродных веществ подразделяются на:

- неспецифическая резистентность - механические, физико-химические, клеточные, гуморальные, физиологические защитные реакции, направленные на сохранение постоянства внутренней среды и восстановления нарушенных функций макроорганизма.

- врожденный иммунитет - резистентность организма к определенным патогенным агентам, которая передается по наследству и присуща определенному виду.

- приобретенный иммунитет - специфическая защита против генетически чужеродных субстанций (антигенов), осуществляемую иммунной системой организма в виде выработки антител.

Неспецифическая резистентность организма обусловлена такими факторами защиты, которые не нуждаются в специальной перестройке, а обезвреживают чужеродные тела и вещества в основном за счет механических или физико-химических воздействий. К ним относятся:

Кожа - являясь физической преградой на пути микроорганизмов, она одновременно обладает бактерицидным свойством в отношении возбудителей желудочно-кишечных и других заболеваний. Бактерицидное действие кожи зависит от ее чистоты. На загрязненной коже микробы сохраняются дольше, чем на чистой.

Слизистые оболочки глаз, носа, рта, желудка и других органов, подобно кожным барьерам, в результате непроницаемости их для различных микробов и бактерицидного действия секретов осуществляют противомикробные функции. В слезной жидкости, мокроте, слюне находится специфический белок лизоцим, который вызывает «лизис» (растворение) многих микробов.

Желудочный сок (в его состав входит соляная кислота) обладает весьма выраженными бактерицидными свойствами в отношении многих возбудителей, особенно кишечных инфекций.

Лимфатические узлы - в них задерживаются и обезвреживаются патогенные микробы. В лимфатических узлах развивается воспаление, губительно действующее на возбудителей инфекционных болезней.

Фагоцитарная реакция (фагоцитоз) - открыл ее И.И. Мечников. Он доказал, что некоторые клетки крови (лейкоциты) способны захватывать и переваривать микробы, освобождая от них организм. Такие клетки называют фагоцитами.

Антитела - особые специфические вещества микробной природы, способные инактивировать микробы и их токсины. Эти защитные вещества в различных тканях и органах (селезенке, лимфатических узлах, костном мозге). Они вырабатываются при внедрении в организм болезнетворных микробов, чужеродных белковых веществ, сыворотки крови других животных и т.д. Все вещества, способные вызывать образование антител - антигены.

Приобретенный иммунитет может быть естественным, появляющимся в результате перенесенного инфекционного заболевания и искусственным, который приобретается вследствие введения в организм специфических биопрепаратов - вакцин и сывороток.

Вакцины представляют собой убитых или ослабленных возбудителей инфекционных заболеваний или их обезвреженные токсины. Приобретенный иммунитет является активным, т.е. возникшим в результате активной борьбы организма с возбудителем болезни.

Кровь состоит из форменных элементов - эритроцитов, лейкоцитов, кровяных пластинок и жидкости плазмы.

Эритроциты у большинства млекопитающих безъядерные клетки, живут 30-120 дней.

Соединяясь с кислородом, гемоглобин эритроцитов образует оксигемоглобин, переносящий кислород в ткани и углекислый газ от тканей к легким. В 1 мм 3 кропи у крупного рогатого скота 5-7, у овец - 7-9, у свиньи - 5-8, у лошади 8-10 млн эритроцитов.

Лейкоциты способны к самостоятельному движению, проходят через стенки капилляров. Они делятся на две группы: зернистые - гранулоциты и незернистые - агранулоциты. Зернистые лейкоциты разделяются па: эозинофилы, базофилы и нейтрофилы. Эозинофилы обезвреживают чужеродные белки. Базофилы транспортируют биологически активные вещества и участвуют в свертывании крови. Нейтрофилы осуществляют фагоцитоз - поглощение микробов и погибших клеток.

Агранулоциты состоят из лимфоцитов и моноцитов. По величине лимфоциты делятся на большие, средние и малые, а по функции на Б-лимфоциты и Т-лимфоциты. Б-лимфоциты или иммуноциты образуют защитные белки - антитела, нейтрализующие яды микробов, вирусов. Т-лимфоциты или тимусзависящие лимфоциты обнаруживают чужеродные вещества в организме и регулируют с помощью Б-лимфоцитов сто защитные функции. Моноциты способны к фагоцитозу, поглощая отмершие клетки, микробов и инородные частицы.

Кровяные пластинки участвуют в свертывании крови, выделяют серотонин, суживающий кровеносные сосуды.

Кровь вместе с лимфой и тканевом жидкостью образует внутреннюю среду организма. Для нормальных условий жизни необходимо поддержание постоянства внутренней среды. В организме на относительно постоянном уровне удерживаются количество крови и тканевой жидкости, осмотическое давление, реакция крови и тканевой жидкости, температура тела и т. д. Постоянство состава и физических свойств внутренней среды называют гомеостазом . Он поддерживается благодаря непрерывной работе органов и тканей организма.

В плазме содержатся белки, глюкоза, липиды, молочная и пировиноградная кислоты, небелковые азотистые вещества, минеральные соли, ферменты, гормоны, витамины, пигменты, кислород, углекислый газ, азот. Больше всего в плазме белков (6-8%) альбуминов и глобулинов. Глобулин-фиброноген участвует в свертывании крови. Белки, создавая онкотическое давление, поддерживают нормальный объем крови и постоянное количество воды в тканях. Из гамма-глобулинов образуются антитела, которые создают иммунитет в организме и защищают его от бактерий и вирусов.

Кровь выполняет следующие функции:

  • питательную - переносит питательные вещества (продукты расщепления белков, углеводов, липидов, а также витамины, гормоны, минеральные соли и воду) от пищеварительного тракта к клеткам организма;
  • выделительную - удаление из клеток организма продуктов обмена веществ. Они поступают из клеток в тканевую жидкость, а из нее в лимфу и кровь. Кровью они переносятся в выделительные органы - почки и кожу - и удаляются из организма;
  • дыхательную - переносит кислород от легких к тканям, а образующийся в них углекислый газ к легким. Проходя через капилляры легких, кровь отдает углекислый газ и поглощает кислород;
  • регуляторную - осуществляет гуморальную связь между органами. Железы внутренней секреции выделяют в кровь гормоны. Эти вещества разносятся кровью ею организму, действуя на органы, изменяя их деятельность;
  • защитную . Лейкоциты крови обладают способностью поглощать микробы и другие инородные вещества, поступающие в организм, вырабатывают антитела, образующиеся при проникновении в кровь или лимфу микробов, их ядов, чужеродных белков и других веществ. Наличие антител в организме обеспечивает его иммунитет;
  • терморегуляторную . Кровь выполняет терморегуляцию благодаря непрерывной циркуляции и большой теплоемкости. В работающем органе в результате обмена веществ выделяется тепловая энергия. Тепло поглощается кровью и разносится по всему организму, в результате этого кровь способствует распространению тепла по организму и поддержанию определенной температуры тела.

У животных в состоянии покоя примерно половина всей крови циркулирует в кровеносных сосудах, а другая половина задерживается в селезенке, печени, коже - в депо крови. При необходимости организму запас крови поступает в кровяное русло. Количество кропи у животных в среднем 8% массы тела. Потеря 1/3-1/2 крови может привести животного к гибели.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вконтакте

Одноклассники

Дополнительные материалы по теме

Как известно почти все попадающие в организм чужеродные вещества, в том числе лекарства, метаболизируются в нем и затем выводятся. Известно, что отдельные индивиды отличаются друг от друга скоростью метаболизации лекарств и вывода их из организма: в зависимости от природы химического вещества эта разница может быть от 4- до 40-кратной. При медленной метаболизации и выводе определенное лекарство может накапливаться в организме и, наоборот, некоторые индивиды могут быстро выводить чужеродное вещество из организма.

Выводу чужеродных веществ способствуют меболизирующие их ферменты. Однако наличие последних в организме зависит прежде всего от наследственных факторов, хотя на их активность могут повлиять возраст, пол, пища, болезни и т. п.

Согласно обоснованному предположению, человек, ферментная система которого быстрее и в большей мере превращает канцерогены в их ультимативные формы, более склонен к заболеванию раком, чем человек, медленнее метаболизирующий канцерогены. И в этом случае были обнаружены очень большие различия между отдельными индивидами. Например, активность фермента эпоксидгидратазы, метаболизирующей канцерогенные ПАУ, который обнаружен в микросомах печени более семидесяти индивидов, у человека с наиболее высокой степенью метаболизма может в 17 раз превышать его активность у человека с наиболее низкой степенью обмена веществ. Другие, связанные с метаболизмом канцерогенов ферменты также обнаруживают большую межиндивидную разницу.

При этом следует помнить, что по своему действию эти ферменты очень различаются друг от друга в разных тканях одного и того же индивида (легких, печени или клетках крови). Но их активность может меняться также в одной и той же ткани одного индивида (вследствие старения, под влиянием болезни, в результате действия лекарств, под влиянием пищи или индукции ферментов). Не стоит особо подчеркивать также, что активность связанных с метаболизмом канцерогенов ферментов в тканях различных животных различна; еще больше различие между тканями животных и человека.

Однако исследователи все же попытались приблизительно определить канцерогенную опасность для отдельных индивидов на основе действия ферментов, превращающих вредные вещества в организме в их ультимативные формы (так называемая метаболическая активация). Предполагают, хотя это предположение и не совсем обоснованно, что активность токсических и обезвреживающих канцерогены ферментов в лимфоцитах крови отражает состояние ферментов также в других тканях.

При определении действия бензо[a]пиренгидроксилазы установлено, что в гомогенатах лимфоцитов курильщиков его содержится на 52 % больше, чем в аналогичных гомогенатах некурящих. Обнаружена также более высокая активность этого фермента, вызывающая метаболическую активацию ПАУ, в микросомах лимфоцитов курящих и индивидов, принимавших лекарство (до 93 %). Но одновременно выяснено, что активность фермента глутатион-S-трансферазы, обезвреживающего ПАУ в организме, в гомогенате лимфоцитов всех групп (курящих, некурящих и индивидов, принимавших лекарства) оставалась примерно одинаковой. Из этого можно сделать два вывода:

  1. Курение влияет не только на легкие. Оно может также вызвать изменение в других тканях, например лимфоцитах крови. Это значит, что о готовности одной ткани метаболизировать канцерогены можно было бы судить лишь на основе определения активности соответствующих ферментов в других тканях, например лимфоцитах.
  2. В то время как курение повышает активность «токсического» фермента АГГ, активность «обезвреживающего» фермента глутатион-β-трансферазы остается неизменной. Это могло бы означать, что у курящих метаболической активации подвергается большая часть присутствующих канцерогенов, между тем как обезвреживающая активность не изменяется. Этим можно было бы, в самых общих чертах, объяснить тот факт, что у курильщиков частота заболевания раком выше, чем у некурящих, причем не только в результате повышенного поступления канцерогенов, но и благодаря повышенной активности ферментов, превращающих канцерогены в их ультимативные формы.

Ферменты и их индукция

Таким образом, можно вполне обоснованно предположить, что индивиды, у которых наблюдается высокая активность ферментов, превращающих химические канцерогены в их ультимативные производные, обнаруживают более высокую восприимчивость к раку, чем другие. Следовательно, выявление лиц с повышенной активностью таких токсических ферментов позволило бы отобрать тех, у кого высока опасность возникновения рака. Проведение соответствующих профилактических мер для таких индивидов – исключение их контакта с химическими канцерогенами, прием предохраняющих от рака лекарств – позволило бы добиться снижения заболеваемости.

Активизация этих ферментов (например, АГГ, бензо[а]пиренгндроксилаза) могла бы быть следствием наследственных свойств определенного индивида, либо обусловлена индукцией, т. е. повышением активности этих ферментов некоторыми химическими веществами. Д. В. Небарт предполагает наличие у мыши генного локуса Аг, который отвечает за обеспечение такой системой ферментов. Организм животных, обладающих этим генетическим признаком (локусом Аг), реагирует на канцерогенные ПАУ их ускоренной метаболизацией и, следовательно, повышенной заболеваемостью раком. И наоборот, у животных, не обладающих этим наследственным признаком, метаболизм очень замедлен и заболеваемость низка. Можно предположить, что подобные генетические признаки существуют и у других видов животных или человека.

Другим фактором, который мог бы повысить риск возникновения этой болезни путем повышения-активности токсических ферментов, являются индуцирующие химические вещества. К ним относятся, например, полихлорированные бмферменты, которые сами не канцерогенны, но, усиливая активность токсических ферментов, индуцируя их, могут способствовать усилению опасности канцерогенеза v индивидов, подверженных их действию.

Таким образом, выявление тех индивидов, которые характеризуются предположительно более высокой подверженностью заболеванию раком в результате контакта с химическими канцерогенами, можно было бы проводить путем установления активности какого-либо токсического фермента (например, бензо[а]-пиренгидроксилазы) в лимфоцитах их кропи. Такая проверка технически очень трудно осуществима, она, к тому же, согласно данным многих исследователей, весьма ненадежна. Как уже говорилось, очень трудно на основе активности одного фермента в лимфоцитах судить об активности нескольких ферментов в других тканях, особенно если она легко изменяется пол действием других химических веществ, возраста, пищи, болезней и других факторов. Следовательно, осторожность в определении опасности возникновения рака у отдельных людей на основе активности ферментов в их клетках вполне оправданна.

  • 11. Обезвреживание билирубина печенью. Формула конъюгированного (прямого) билирубина
  • 12. Нарушения обмена билирубина. Гипербилирубинемия и ее причины.
  • 13. Желтухи, причины. Типы желтух. Желтуха новорожденного
  • 2. Печёночно-клеточная (печёночная) желтуха
  • 14. Диагностическое значение определения концентрации билирубина в биологических жидкостях человека при различных типах желтух
  • 15. Белки сыворотки крови. Общее содержание, функции. Отклонение в содержании общего белка сыворотки крови, причины
  • Нормальные значения общего белка сыворотки крови
  • Клиническое значение определения общего белка сыворотки крови
  • Гиперпротеинемия
  • Гипопротеинемия
  • 19)Белки острой фазы, представители, диагностическое значение
  • 20)Ренин-ангиотензивная система, состав, физиологическая роль
  • Вопрос 26. Противосвертывающая система крови. Основные первичные и вторичные природные антикоагулянты крови.
  • Вопрос 27. Фибринолитическая система крови. Механизм действия.
  • Вопрос 28. Нарушения процессов свертывания крови. Тромботические и геморрагические состояния. Двс – синдром.
  • Вопрос 29. Остаточный азот крови. Понятие, компоненты, содержание в норме. Азотемия, типы, причины возникновения.
  • Вопрос 30. Обмен железа: всасывание, транспорт кровью, депонирование. Роль железа в процессах жизнедеятельности.
  • 31. Тетрагидрофолиевая кислота, роль в синтезе и использовании одно­углеродных радикалов. Метилирование гомоцистеина.
  • 32. Недостаточность фолиевой кислоты и витамина в12. Антивитамины фолиевой кислоты. Механизм действия сульфаниламидных препаратов.
  • 34. Фенилкетонурия, биохимический дефект, проявление болезни, диаг­ностика, лечение.
  • 35. Алкаптонурия, альбинизм. Биохимический дефект, проявление бо­лезней.
  • 36. Распределение воды в организме. Водно-электролитное пространства организма, их состав.
  • 37. Роль воды и минеральных веществ в процессах жизнедеятельности
  • 38. Регуляция водно-электролитного обмена. Строение и функции альдостерона, вазопрессина и ренин-ангиотензиновой системы, механизм регулирующего действия
  • 39. Механизмы поддержания объема, состава и pH жидкостей организма.
  • 40. Гипо- и гипергидратация водно-элетролитных пространств. Причины возникновения.
  • 45.Нарушения кислотно-основного состояния. Типы нарушений. Причины и механизмы¬возникновения ацидоза и алкалоза
  • 46.Роль печени в процессах жизнедеятельности.
  • 47. Метаболическая функция печени (роль в обмене углеводов, липидов, аминокислот).
  • 48. Метаболизм эндогенных и чужеродных токсических веществ в печени: микросомальное окисление, реакции конъюгации
  • 49. Обезвреживание шлаков, нормальных метаболитов и биологически активных веществ в печени. Обезвреживание продуктов гниения
  • 50. Механизм обезвреживания чужеродных веществ в печени.
  • 51. Металлотионеин, обезвреживание ионов тяжелых металлов в печени. Белки теплового шока.
  • 52.Токсичность кислорода. Образование активных форм кислорода.
  • 53. ПОнятие о перекисном окислении липидов, повреждение мембран в результате перекисного окисления липидов.
  • 54. . Механизмы защиты от токсического действия кислорода.Антиоксидатная система.
  • 55. Основы химического канцерогенеза. Понятие о химических канцерогенах.
  • 50. Механизм обезвреживания чужеродных веществ в печени.

    Механизм обезвреживания токсинов

    Обезвреживание веществ в печени заключается в их химической модификации, которая обычно включает две фазы.

    В первой фазе вещество подвергается окислению (отсоединению электронов), восстановлению (присоединению электронов) или гидролизу.

    Во второй фазе ко вновь образованным активным химическим группам присоединяется какое-либо вещество. Такие реакции именуются реакциями конъюгации, а процесс присоединения - конъюгированием.(см. вопрос 48)

    51. Металлотионеин, обезвреживание ионов тяжелых металлов в печени. Белки теплового шока.

    Металлотионеин - семейство низкомолекулярных белков с высоким содержанием цистеина. Молекулярная масса варьирует от 500 Да до 14 кДа. Белки локализуются на мембране аппарата Гольджи. Металлотионеины способны связывать как физиологические (цинк, медь, селен), так и ксенобиотические (кадмий, ртуть, серебро, мышьяк и др.) тяжёлые металлы. Связывание тяжёлых металлов обеспечивается наличием тиольных групп остатков цистеинов, которые составляют около 30% от всего аминокислотного состава.

    При попадании в организм ионов тяжелых металлов Cd2+, Hg2+, Pb2+ в печени и почках происходит увеличение синтеза металлотионинов – белков, которые прочно связывают эти ионы, тем самым не давая им в дальнейшем конкурировать с необходимыми для жизнедеятельности ионами Fe2+, Co2+, Mg2+ за места связывания в ферментах.

    Процессы микросомального окисления в печени – гидроксилирование вредных соединений, происходящее при участии фермента цитохрома P450 и завершающееся изменением первичной структуры молекул этих веществ. Очень часто данный способ аутодетоксикации оказывается самым главным, особенно, когда речь идет об обезвреживании органических отравляющих веществ и лекарственных препаратов. Вообще, именно в печени обезвреживается максимальное количество чужеродных веществ (ксенобиотиков), и уже оттуда они направляются к органам, через которые будут выведены.

    Белки теплового шока - это класс функционально сходных белков, экспрессия которых усиливается при повышении температуры или при других стрессирующих клетку условиях. Повышение экспрессии генов, кодирующих белки теплового шока, регулируется на этапе транскрипции. Чрезвычайное усиление экспрессии генов, кодирующих белки теплового шока является частью клеточного ответа на тепловой шок и вызывается в основном фактором теплового шока. Белки теплового шока обнаружены в клетках практически всех живых организмов, от бактерий до человека.

    52.Токсичность кислорода. Образование активных форм кислорода.

    Во время роста и метаболизма, кислородные продукты сокращения произведены в пределах микроорганизмов и секретированы в окружающую питательную среду. Суперокисный анион, один кислородный продукт сокращения, произведен унивэлент сокращением кислорода: о2-→ о2- Это произведено во время взаимодействия молекулярного кислорода с различными клеточными элементами, включая сниженные рибофлавины, флэвопротеинс, хиноны, тиолы,и белки железной серы. Точный процесс, которым это наносит внутриклеточный ущерб, не известен; однако, это способно к участию во многих деструктивных реакциях, потенциально смертельных к клетке. Кроме того продукты вторичных реакций могут усилить токсичность.

    Например, одна гипотеза считает, что суперокисный анион реагирует с перекисью водорода в клетке:

    О2-+ H2O2 → О – + О. + O2

    Эта реакция, известная как реакция Хабера- Вайса, производит свободного гидроксильного радикала (О ·), который является самым мощным биологическим известным оксидантом. Это может напасть фактически на любое органическое вещество в клетке.

    Последующая реакция между суперокисным анионом и гидроксильным радикальным

    кислородом майки продуктов (O2*), который также разрушителен для клетки:

    О2-+ О → О + O2*

    Взволнованная синглетная кислородная молекула является очень реактивной. Поэтому, суперокись должна быть удалена для клеток, чтобы остаться в живых в присутствии кислорода.

    Большинство факультативных и аэробных организмов содержит высокую концентрацию фермента, названного суперокисной дисмутазой. Этот фермент преобразовывает суперокисный анион в кислород стандартного состояния и перекись водорода, таким образом избавляя клетку деструктивных суперокисных анионов:

    2о2-+ 2H+Superoxide Дисмутаза O2 + H2 O2

    Перекись водорода, произведенная в этой реакции, является окислителем, но это не повреждает клетку столько, сколько суперокисный анион и имеет тенденцию распространяться из клетки. Много организмов обладают каталазой или пероксидазой или обоими, чтобы устранить H2O2. Каталаза использует H2O2 в качестве оксиданта (электронный акцептор) и редактэнт (электронный донор), чтобы преобразовать пероксид в кислород стандартного состояния и воду:

    H2O2 + H2O2Catalase 2H2O + O2

    Пероксидаза использует редактэнт кроме H2O2: H2O2 + Пероксидаза H2R 2H2O + R

    В основном состоянии молекулярный кислород представляет собой относительно стабильную молекулу, спонтанно не реагирующую с различными макромолекулами. Это объясняется его

    электронной конфигурацией: основная форма кислорода в атмосфере (3О2) находится в триплетном состоянии.

    В настоящее время к числу АФК относят производные кислорода радикальной природы (супероксид-радикал (анион-радикал) О2 -, гидроперекисный радикал НО2 , гидроксил-радикал НО ), а также его реактивные производные (перекись водорода Н2О2, синглетный кислород 1О2 и пероксинитрит).

    Поскольку растения неподвижны и находятся под постоянным воздействием меняющихся условий среды, а также осуществляют оксигенный фотосинтез, в их тканях концентрация молекулярного кислорода оказывается намного более высокой, чем у других эукариот. Показано, что концентрация кислорода в митохондриях млекопитающих достигает 0,1 мкМ, в то время как в митохондриях растительных клеток – более 250 мкМ. При этом, по оценкам исследователей, примерно 1 % поглощаемого растениями кислорода преобразуется в его активные формы, что неизбежно связано с неполным пошаговым восстановлением молекулярного кислорода.

    Таким образом, появление активных форм кислорода в живом организме связано с протеканием метаболических реакций в различных клеточных компартментах.



    © 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух