Транспорт веществ через клеточные мембраны. Превращение глюкозы в тканях Транспорт глюкозы

Транспорт веществ через клеточные мембраны. Превращение глюкозы в тканях Транспорт глюкозы

05.04.2020

Конечными продуктами гидролиза углеводов в желудочно-кишечном тракте являются всего три вещества: глюкоза, фруктоза и галактоза. При этом на долю глюкозы приходится почти 80% общего количества этих моносахаридов. После всасывания в кишечнике большая часть фруктозы и практически вся галактоза преобразуются в печени в глюкозу. Вследствие этого в крови присутствуют только небольшие количества фруктозы и галактозы. В итоге процессов превращения глюкоза становится единственным представителем углеводов, транспортируемым во все клетки организма.

Соответствующие ферменты , необходимые клеткам печени для обеспечения процессов взаимного превращения моносахаридов - глюкозы, фруктозы и галактозы - показаны на рисунке. В результате этих реакций, когда печень высвобождает моносахариды обратно в кровь, окончательным продуктом, попадающим в кровь, становится глюкоза. Причина этого явления заключается в том, что клетки печени содержат большое количество глюкозофосфатазы, поэтому глюкозо-6-фосфат может расщепляться на глюкозу и фосфат. Затем глюкоза транспортируется через мембраны клеток обратно в кровь.

Хотелось бы еще раз подчеркнуть , что обычно более 95% всех моносахаридов, циркулирующих в крови, представлены конечным продуктом превращения - глюкозой.
Транспорт глюкозы через мембрану клетки . Прежде чем глюкоза будет использована клетками тканей, она должна транспортироваться через мембраны клеток в цитоплазму. Однако глюкоза не может свободно диффундировать через поры в клеточных мембранах, т.к. максимальная молекулярная масса частиц должна быть в среднем равна 100, в то время как молекулярная масса глюкозы составляет 180. Тем не менее глюкоза может относительно легко проникать внутрь клеток благодаря механизму облегченной диффузии. Основы этого механизма обсуждались в главе 4, напомним его основные моменты.

Насквозь прободая липидную мембрану клеток , белки-переносчики, количество которых в мембране достаточно велико, могут взаимодействовать с глюкозой. В такой связанной форме глюкоза может транспортироваться белком-переносчиком с одной стороны мембраны на другую и там отделяться; если с одной стороны мембраны концентрация глюкозы выше, чем с другой, то глюкоза будет транспортироваться туда, где ее концентрация ниже, а не в противоположном направлении. Транспорт глюкозы через клеточные мембраны в большинстве тканей резко отличается от транспорта, который наблюдается в желудочно-кишечном тракте или в эпителиоцитах канальцевого аппарата почек.

В обоих упомянутых случаях транспорт глюкозы опосредован сопряженным с механизмом активного транспортом натрия. Активный транспорт натрия обеспечивает энергией процесс всасывания глюкозы против градиента концентрации. Такой сопряженный с натрием активный механизм транспорта глюкозы встречается только в специализированных эпителиоцитах, приспособленных для активного процесса абсорбции глюкозы. В других клеточных мембранах глюкоза транспортируется только из областей с высокой концентрацией в область низких концентраций с помощью механизма облегченной диффузии, возможность которого создается особыми свойствами расположенного в мембране белка-переносчика глюкозы.

Биологическая химия Лелевич Владимир Валерьянович

Транспорт глюкозы из крови в клетки

Поглощение глюкозы клетками из кровотока происходит, также путем облегченной диффузии. Следовательно, скорость трансмембранного потока глюкозы зависит только от градиента ее концентрации. Исключение составляют клетки мышц и жировой ткани, где облегченная диффузия регулируется инсулином.

Глюкозные транспортеры (ГЛЮТ) обнаружены во всех тканях. Существуют несколько разновидностей ГЛЮТ, они пронумерованы в соответствии с порядком их обнаружения. Описанные 5 типов ГЛЮТ имеют сходную первичную структуру и доменную организацию. ГЛЮТ-1 обеспечивает стабильный поток глюкозы в мозг. ГЛЮТ-2 обнаружен в клетках органов, выделяющих глюкозу в кровь (печень, почки). Именно при участии ГЛЮТ-2 глюкоза переходит в кровь из энтероцитов и печени. ГЛЮТ-2 участвует в транспорте глюкозы в?-клетки поджелудочной железы. ГЛЮТ-3 содержится во многих тканях, обладает большим, чем ГЛЮТ-1, сродством к глюкозе. Он также обеспечивает постоянный приток глюкозы к клеткам нервной и других тканей. ГЛЮТ-4 – главный переносчик глюкозы в клетки мышц и жировой ткани. ГЛЮТ-5 встречается главным образом, в клетках тонкого кишечника. Его функции известны недостаточно.

Все типы ГЛЮТ могут находиться как в плазматической мембране, так и в цитозольных везикулах. ГЛЮТ-4 (в меньшей степени ГЛЮТ-1) почти полностью находятся в цитоплазме клетки. Влияние инсулина на такие клетки приводит к перемещению везикул, содержащих ГЛЮТ, к плазматической мембране, слиянию с ней и встраиванию транспортеров в мембрану. После чего возможен облегченный транспорт глюкозы в эти клетки. После снижения концентрации инсулина в крови транспортеры глюкозы снова перемещаются в цитоплазму, и поступление глюкозы в клетку прекращается.

В клетки печени глюкоза проходит при участии ГЛЮТ-2, независимо от инсулина. Хотя инсулин и не влияет на транспорт глюкозы, он усиливает приток глюкозы в гепатоцит в период пищеварения косвенным путем, индуцируя синтез глюкокиназы и ускоряя тем самым фосфорилирование глюкозы.

Транспорт глюкозы из первичной мочи в клетки канальцев почек происходит путем вторично-активного транспорта. Благодаря этому глюкоза может поступать в клетки канальцев даже в том случае, если ее концентрация в первичной моче меньше, чем в клетках. Глюкоза реабсорбируется из первичной мочи почти полностью (на 99 %) в конечной части канальцев.

Известны различные нарушения в работе транспортеров глюкозы. Наследственный дефект этих белков может лежать в основе инсулинонезависимого сахарного диабета.

Из книги Тесты по биологии. 6 класс автора Бенуж Елена

КЛЕТОЧНОЕ СТРОЕНИЕ ОРГАНИЗМОВ СТРОЕНИЕ КЛЕТКИ. ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ СТРОЕНИЯ КЛЕТКИ 1. Выберите один наиболее правильный ответ.Клетка – это:A. Мельчайшая частица всего живогоБ. Мельчайшая частица живого растенияB. Часть растенияГ. Искусственно созданная единица для

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Из книги Мы и её величество ДНК автора Полканов Федор Михайлович

Из книги Кровь: река жизни [От древних легенд до научных открытий] автора Азимов Айзек

Клетки-коллективисты и клетки-одиночки В основе тесной кооперации клеток, входящих в состав многоклеточного организма, лежат по меньшей мере две важнейшие причины. Во-первых, каждая отдельно взятая клетка, будучи сама по себе на редкость умелым и исполнительным

Из книги Металлы, которые всегда с тобой автора Терлецкий Ефим Давидович

Группы крови В результате автомобильной катастрофы, произошедшей на шоссе Нью-Йорк - Вашингтон, погиб мистер Н., миллионер. Прямых наследников у него не было, а завещания в архивах миллионера не обнаружили. Но претенденты на наследство тотчас нашлись. Разом три молодых

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Глава 6 Дар крови Иногда с красными клетками происходят разного рода неприятности не по их вине, а скорее из-за попадания в систему кровообращения чужеродных тел. Например, некоторые змеиные яды, а также яды скорпионов и многоножек содержат химические вещества, способные

Из книги Река жизни автора Симен Бернард

С железом в крови Слово «руда» когда-то означало кровь. И не напрасно наши предки связывали цвет руды с цветом крови. Сегодня мы знаем: и крови, и руде цвет придаёт железо, хотя оно содержится и не во всей крови, а только в красных тельцах - эритроцитах, где сосредоточено

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

Арифметика крови Всякий, кому приходилось сдавать кровь на анализ, получив результат, прежде всего интересуется содержанием гемоглобина. О чем говорят цифры? Кровь здорового человека содержит от 13 до 16 % гемоглобина, причём за 100 % принято его содержание в 100 мл, равное 16,7 г.

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Передача гормонального сигнала: синтез, секреция, транспорт гормонов, их действие на клетки-мишени и инактивация В определении понятия «гормон» было указано несколько этапов распространения гормонального сигнала (рис. 2.6). Рис. 2.6. Этапы распространения гормонального

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Концентрация глюкозы в крови – важнейшая константа На рис. 2.10 обмен углеводов представлен в виде схемы. Основным показателем состояния углеводного обмена является содержание глюкозы в крови. Нормальным является показатель от 4,4 до 6,6 миллимоля, что соответствует

Из книги автора

Глава XVIII Речной транспорт Первая клетка не смогла бы выжить, не будь особого «климата» жизни, создаваемого морем. Точно так же каждая из сотен триллионов клеток, составляющих организм человека, погибла бы без крови и лимфы. На протяжении миллионов лет, с тех пор как

Из книги автора

ГЛАВА 7 Кембрий: «скелетная революция» и пеллетный транспорт. Эволюция морской экосистемы: кембрий, палеозой и современность Итак, мы расстались с вендскими экосистемами в то время, когда они пребывали в состоянии глубочайшего глобального кризиса (глава 6). «Эдиакарский

Из книги автора

2. Клетки крови Система кроветворения сложнее других систем с постоянным обновлением дифференцированных клеток. В этом случае нет такого простого пространственного разделения стволовых клеток, дифференцирующихся клеток и клеток, достигших терминальной

Из книги автора

Глава 17. Пути метаболизма глюкозы Глюкоза является основным метаболитом и транспортной формой углеводов в организме человека и животных. Источниками глюкозы являются углеводы пищи, гликоген тканей и процесс глюконеогенеза в печени и корковом веществе почек. Для

Из книги автора

Глава 19. Липиды тканей, переваривание и транспорт липидов Липиды – неоднородная в химическом отношении группа веществ биологического происхождения, общим свойством которых является гидрофобность и способность растворяться в неполярных органических растворителях.

При использовании углеводов, как впрочем и других веществ, перед организмом стоит две задачи – всасывание из кишечника в кровь и транспорт из крови в клетки тканей. В любом случае необходимо преодолевать мембрану.

Транспорт моносахаров через мембраны

Всасывание в кишечнике

После переваривания крахмала и гликогена, после расщепления дисахаридов в полости кишечника накапливается глюкоза и другие моносахариды, которые должны попасть в кровь. Для этого им необходимо преодолеть, как минимум, апикальную мембрану энтероцита и его базальную мембрану.

Вторично-активный транспорт

По механизму вторичного активного транспорта из просвета кишечника происходит всасывание глюкозы и галактозы . Такой механизм означает, что затрата энергии при переносе сахаров происходит, но тратится она не непосредственно на транспорт молекулы, а на создание градиента концентрации другого вещества. В случае моносахаридов таким веществом является ион натрия .

Аналогичный механизм транспорта глюкозы присутствует в эпителии канальцев почек , который реабсорбирует ее из первичной мочи.
Только наличие активного транспорта позволяет перенести из внешней среды внутрь клеток практически всю глюкозу.

Фермент Na + ,К + -АТФаза постоянно, в обмен на калий, выкачивает ионы натрия из клетки, именно этот транспорт требует затрат энергии. В просвете кишечника содержание натрия относительно высоко и он связывается со специфическим мембранным белком, имеющим два центра связывания: один для натрия, другой для моносахарида. Примечательно то, что моносахарид связывается с белком только после того, как с ним свяжется натрий. Белок-транспортер свободно мигрирует в толще мембраны. При контакте белка с цитоплазмой натрий быстро отделяется от него по градиенту концентрации и сразу отделяется моносахарид. Результатом является накопление моносахарида в клетке, а ионы натрия выкачиваются Na + ,К + -АТФазой.

Выход глюкозы из клетки в межклеточное пространство и далее кровь происходит благодаря облегченной диффузии.

Вторично-активный транспорт глюкозы и галактозы через мембраны энтероцитов
Пассивный транспорт

В отличие от глюкозы и галактозы, фруктоза и другие моносахара всегда транспортируются белками-транспортерами, не зависящими от градиента натрия, т.е. облегченной диффузией . Так, на апикальной мембране энтероцитов находится транспортный белок ГлюТ-5 , через который фруктоза диффундирует в клетку.

Для глюкозы вторично-активный транспорт используется при ее низких концентрациях в кишечнике. Если концентрация глюкозы в просвете кишечника велика , то она также может транспортироваться в клетку путем облегченной диффузии при участии белка ГлюТ-5.

Скорость всасывания моносахаридов из просвета кишечника в эпителиоцит не одинакова. Так, если скорость всасывания глюкозы принять за 100%, то относительная скорость переноса галактозы составит 110%, фруктозы – 43%, маннозы – 19%.

Транспорт из крови через мембраны клеток

После выхода в кровь, оттекающую от кишечника, моносахариды движутся по сосудам воротной системы в печень, частично задерживаются в ней, частично выходят в большой круг кровообращения. Следующей их задачей стоит проникновение в клетки органов.

Из крови внутрь клеток глюкоза попадает при помощи облегченной диффузии по градиенту концентрации с участием белков-переносчиков (глюкозных транспортеров – "ГлюТ "). Всего выделяют 12 типов транспортеров глюкозы, отличающихся локализацией, сродством к глюкозе и способностью к регулированию.

Глюкозные транспортеры ГлюТ-1 имеются на мембранах всех клеток и ответственны за базовый транспорт глюкозы в клетки, требуемый для поддержания жизнеспособности.

Особенностями ГлюТ-2 является способность пропускать глюкозу в двух направлениях и низкое сродство к глюкозе. Переносчик представлен, в первую очередь, в гепатоцитах , которые после еды захватывают глюкозу, а в постабсорбтивный период и при голодании поставляют ее в кровь. Также присутствует этот транспортер в эпителии кишечника и почечных канальцев . Присутствуя на мембранах β-клеток островков Лангерганса, ГлюТ-2 переносит глюкозу внутрь при ее концентрации свыше 5,5 ммоль/л и благодаря этому генерируется сигнал для увеличения выработки инсулина .

Глют-3 обладает высоким сродством к глюкозе и представлен в нервной ткани . Поэтому нейроны способны поглощать глюкозу даже при низких ее концентрациях в крови.

В мышцах и жировой ткани находится ГлюТ-4 , только эти транспортеры являются чувствительными к влиянию инсулина . При действии инсулина на клетку они выходят на поверхность мембраны и переносят глюкозу внутрь. Указанные ткани получили название инсулинзависимых .

Некоторые ткани совершенно нечувствительны к действию инсулина, их называют инсулиннезависимыми . К ним относятся нервная ткань, стекловидное тело, хрусталик, сетчатка, клубочковые клетки почек, эндотелиоциты, семенники и эритроциты.

Всасывание моносахаридов в кишечнике

Всасывание моносахаридов из кишечника происходит путем облегченной диффузии с помощью специальных белков-переносчиков (транспортеров). Кроме того, глюкоза и галактоза транспортируются в энтероциты путем вторично-активного транспорта, зависимого от градиента концентрации ионов натрия. Белки-транспортеры, зависимые от градиента Na + , обеспечивают всасывание глюкозы из просвета кишечника в энтероцит против градиента концентрации. Концентрация Na + необходимая для этого транспорта, обеспечивается Na + , К + -АТФ-азой, которая работает как насос, откачивая из клетки Na + в обмен на К + . В отличие от глюкозы, фруктоза транспортируется системой, не зависящей от градиента натрия. При разной концентрации глюкозы в просвете кишечника «работают» разные механизмы транспорта. Благодаря активному транспорту эпителиальные клетки кишечника могут поглощать глюкозу при ее очень низкой концентрации в просвете кишечника. Если же концентрация глюкозы в просвете кишечника велика, то она может транспортироваться в клетку путем облегченной диффузии. Таким же способом может всасываться и фруктоза. Скорость всасывания глюкозы и галактозы гораздо выше, чем других моносахаридов.

Поглощение глюкозы клетками из кровотока происходит, также путем облегченной диффузии. Следовательно, скорость трансмембранного потока глюкозы зависит только от градиента ее концентрации. Исключение составляют клетки мышц и жировой ткани, где облегченная диффузия регулируется инсулином.

Глюкозные транспортеры (ГЛЮТ) обнаружены во всех тканях. Существуют несколько разновидностей ГЛЮТ, они пронумерованы в соответствии с порядком их обнаружения. Описанные 5 типов ГЛЮТ имеют сходную первичную структуру и доменную организацию. ГЛЮТ-1 обеспечивает стабильный поток глюкозы в мозг. ГЛЮТ-2 обнаружен в клетках органов, выделяющих глюкозу в кровь (печень, почки). Именно при участии ГЛЮТ-2 глюкоза переходит в кровь из энтероцитов и печени. ГЛЮТ-2 участвует в транспорте глюкозы в β-клетки поджелудочной железы. ГЛЮТ-3 содержится во многих тканях, обладает большим, чем ГЛЮТ-1, сродством к глюкозе. Он также обеспечивает постоянный приток глюкозы к клеткам нервной и других тканей. ГЛЮТ-4 – главный переносчик глюкозы в клетки мышц и жировой ткани. ГЛЮТ-5 встречается главным образом, в клетках тонкого кишечника. Его функции известны недостаточно.

Все типы ГЛЮТ могут находиться как в плазматической мембране, так и в цитозольных везикулах. ГЛЮТ-4 (в меньшей степени ГЛЮТ-1) почти полностью находятся в цитоплазме клетки. Влияние инсулина на такие клетки приводит к перемещению везикул, содержащих ГЛЮТ, к плазматической мембране, слиянию с ней и встраиванию транспортеров в мембрану. После чего возможен облегченный транспорт глюкозы в эти клетки. После снижения концентрации инсулина в крови транспортеры глюкозы снова перемещаются в цитоплазму, и поступление глюкозы в клетку прекращается.

В клетки печени глюкоза проходит при участии ГЛЮТ-2, независимо от инсулина. Хотя инсулин и не влияет на транспорт глюкозы, он усиливает приток глюкозы в гепатоцит в период пищеварения косвенным путем, индуцируя синтез глюкокиназы и ускоряя тем самым фосфорилирование глюкозы.

Транспорт глюкозы из первичной мочи в клетки канальцев почек происходит путем вторично-активного транспорта. Благодаря этому глюкоза может поступать в клетки канальцев даже в том случае, если ее концентрация в первичной моче меньше, чем в клетках. Глюкоза реабсорбируется из первичной мочи почти полностью (на 99 %) в конечной части канальцев.

Известны различные нарушения в работе транспортеров глюкозы. Наследственный дефект этих белков может лежать в основе инсулинонезависимого сахарного диабета.

Фермент: Субстрат:

1. Сахараза а) глюкозо(α-1,4)-глюкоза

2. Лактаза б) глюкозо(α-1,2)-фруктоза

3. Изомальтаза в) глюкозо(α-1,6)-глюкоза

г) галактозо(ß-1,4)-глюкоза

д) глюкозо(ß-1,4)-глюкоза

3. Выберите один правильный ответ. Транспорт глюкозы из крови в клетки мышечной и жировой ткани происходит:

а) против градиента концентрации

б) при участии Na + ,K + -АТФазы

в) при участии ГЛЮТ-2

г) во время длительного голодания

д) при участии инсулина

4. Выберите правильные ответы. Транспорт глюкозы в клетки мозга происходит:

а) с участием ГЛЮТ-4 б) независимо от инсулина

в) по механизму симпорта г) по градиенту концентрации

д) с затратой энергии АТФ

5. Выполните «цепное» задание.

А. Укажите фермент, катализирующий реакцию

галактозо(ß-1,4)-глюкоза → галактоза + глюкоза

а) сахараза б) мальтаза в) лактаза

Б. Этот фермент:

а) синтезируется в поджелудочной железе

б) является простым белком

в) относится к классу лиаз

г) образует продукт, который всасывается путем простой диффузии

д) изменяет активность в зависимости от возраста

В. Нарушение действия этого фермента может быть связано с

а) кишечными заболеваниями (гастрит, энтерит)

б) возрастным снижением экспрессии гена

в) наследственным дефектом

г) отсутствием белков-переносчиков в мембране кишечных ворсинок

6. Выберите один правильный ответ. Гликогенфосфорилаза катализирует:

а) расщепление гликозидных связей в точках ветвления молекул гликогена

б) образование глюкозо-6-фосфата

в) образование свободной глюкозы

г) реакцию с участием АТФ

д) образование глюкозо-1-фосфата

    Выберите правильные ответы. Ферменты, наследственные дефекты

которых, являются причиной агликогеноза:

а) гликозилтрансфераза

б) глюкозо-6-фосфатаза

в) протеинкиназа

г) киназа гликогенфосфорилазы

д) УДФ-глюкопирофосфорилаза

8. Установите соответствие.

А. Инсулин 1) влияет на проницаемость мембран клеток мозга

Б. Глюкагон для глюкозы

В. Оба 2) активирует фосфатазу гликогенсинтазы

Г. Ни один 3) активирует реакцию АТФ → цАМФ

4) регулирует обмен гликогена в печени

9. Выберите один неправильный ответ. Катаболизм глюкозы:

а) может протекать как в аэробных, так и в анаэробных условиях

б) происходит в цитозоле и в митохондриях

в) служит основным источником АТФ в мышцах при голодании

г) промежуточные продукты используются в анаболических процессах

д) максимальное количество АТФ, образующееся при катаболизме глюкозы,

равно 38 молям

10. Выберите один неправильный ответ. Аэробный распад глюкозы служит источником:

а) субстратов для синтеза аминокислот

б) субстратов для синтеза ТАГ в печени

в) АТФ для жизнедеятельности эритроцитов

г) субстрата для синтеза НАДФ в жировой ткани

д) субстратов для общего пути катаболизма

11. Выберите один неправильный ответ. Анаэробный гликолиз:

а) служит основным поставщиком энергии для эритроцитов

б) обеспечивает энергией мышцы

в) происходит только при условии регенерации НАД + с помощью пирувата

г) обеспечивает окисление глюкозы и образование АТФ без О 2

д) включает 2 реакции субстратного фосфорилирования

12. Выберите правильные ответы. Глюконеогенез:

а) поддерживает постоянный уровень глюкозы в крови

б) обеспечивает энергетические затраты клеток мозга

в) включает обратимые реакции гликолиза

г) использует 2 моля субстрата для синтеза 1 моля продукта

д) использует 6 молей макроэргических соединений для синтеза 1 моля

продукта

13. Выберите один неправильный ответ. Источниками атомов углерода для синтеза глюкозы являются:

а) аланин б) аспартат

в) ацетил-КоА г) глицерол

14. Установите соответствие.

А. Глюконеогенез в печени 1) ускоряется в абсортивном периоде

Б. Распад гликогена в печени 2) образует глюкозу, не используя АТФ

В. Оба 3) источник глюкозы для других органов

Г. Ни один 4) обеспечивает глюкозой мозг при

длительном голодании



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух