Open Library - открытая библиотека учебной информации. Строение периферического нерва Из чего состоит нерв

Open Library - открытая библиотека учебной информации. Строение периферического нерва Из чего состоит нерв

Нервная система человека является стимулятором работы мышечной системы, о которой мы говорили в . Как мы уже знаем, мышцы нужны для передвижения частей тела в пространстве, и мы даже изучили конкретно, какие мышцы для какой работы предназначены. Но что приводит мышцы в действие? Что и как заставляет их работать? Об этом и пойдет речь в данной статье, из которой вы почерпнете необходимый теоретический минимум для освоения темы, обозначенной в названии статьи.

Прежде всего, стоит сообщить, что нервная система предназначена для передачи информации и команд нашего тела. Основные функции нервной системы человека – это восприятие изменений внутри тела и окружающего его пространства, интерпретация этих изменений и ответ на них в виде определенной формы (в т. ч. – мышечного сокращения).

Нервная система – множество разных, взаимодействующих между собой нервных структур, обеспечивающая наряду с эндокринной системой координированное регулирование работы большей части систем организма, а также отклик на смену условий внешней и внутренней среды. Данная система объединяет в себе сенсибилизацию, двигательную активность и корректное функционирование таких систем, как эндокринная, иммунная и не только.

Строение нервной системы

Возбудимость, раздражимость и проводимость характеризуются как функции времени, то есть это – процесс, возникающий от раздражения до появления ответной реакции органа. Распространение нервного импульса в нервном волокне происходит за счет перехода локальных очагов возбуждения на соседние неактивные области нервного волокна. Нервная система человека обладает свойством трансформации и генерации энергий внешней и внутренней среды и преобразования их в нервный процесс.

Строение нервной системы человека: 1- плечевое сплетение; 2- кожно-мышечный нерв; 3- лучевой нерв; 4- срединный нерв; 5- подвздошно-подчревный нерв; 6- бедренно-половой нерв; 7- запирающий нерв; 8- локтевой нерв; 9- общий малоберцовый нерв; 10- глубокий малоберцовый нерв; 11- поверхностный нерв; 12- мозг; 13- мозжечок; 14- спинной мозг; 15- межреберные нервы; 16- подреберный нерв; 17- поясничное сплетение; 18- крестцовое сплетение; 19- бедренный нерв; 20- половой нерв; 21- седалищный нерв; 22- мышечные ветви бедренных нервов; 23- подкожный нерв; 24- большеберцовый нерв

Нервная система функционирует как единое целое с органами чувств и управляется головным мозгом. Самая крупная часть последнего называется большими полушариями (в затылочной области черепа находятся два более мелких полушария мозжечка). Головной мозг соединяется со спинным. Правое и левое большие полушария соединены между собой компактным пучком нервных волокон, называемых мозолистым телом.

Спинной мозг – основной нервный ствол тела – проходит через канал, образованный отверстиями позвонков, и тянется от головного мозга до крестцового отдела позвоночника. С каждой стороны спинного мозга симметрично отходят нервы к различным частям тела. Осязание в общих чертах обеспечивается определенными нервными волокнами, бесчисленные окончания которых находятся в коже.

Классификация нервной системы

Так называемые виды нервной системы человека можно представить следующим образом. Всю целостную систему условно формируют: центральная нервная система – ЦНС, в состав которой входит головной и спинной мозг, и периферическая нервная система – ПНС, в которую входят многочисленные нервы, отходящие от головного и спинного мозга. Кожа, суставы, связки, мышцы, внутренние органы и органы чувств отправляют по нейронам ПНС входные сигналы в ЦНС. В то же время, исходящие сигналы от центральной НС, периферическая НС посылает к мышцам. В качестве наглядного материала, ниже, логически структурированным образом представлена целостная нервная система человека (схема).

Центральная нервная система – основа нервной системы человека, которая состоит из нейронов и их отростков. Главная и характерная функция ЦНС – реализация различных по степени сложности отражательных реакций, имеющих название рефлексов. Низшие и средние отделы ЦНС – спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок – управляют деятельностью отдельных органов и систем организма, реализуют между ними связь и взаимодействие, обеспечивают целостность организма и его корректное функционирование. Высший отдел ЦНС – кора больших полушарий головного мозга и ближайшие подкорковые образования – по большей части управляет связью и взаимодействием организма как целостной структуры с внешним миром.

Периферическая нервная система – является условно выделяемой частью нервной системы, которая находится за пределами головного и спинного мозга. Включает в себя нервы и сплетения вегетативной нервной системы, соединяя ЦНС с органами тела. В отличие от ЦНС, ПНС не защищена костями и может быть подвержена воздействию механических повреждений. В свою очередь, саму периферическую нервную систему делят на соматическую и вегетативную.

  • Соматическая нервная система – часть нервной системы человека, которая представляет собой комплекс чувствительных и двигательных нервных волокон, отвечающих за возбуждение мышц, и в том числе кожи и суставов. Также она руководит координацией движений тела, и получением и передачей внешних стимулов. Эта система выполняет действия, которыми человек управляет осознанно.
  • Вегетативную нервную систему делят на симпатическую и парасимпатическую. Симпатическая нервная система управляет ответной реакцией на опасности или стресс, и кроме прочего, может вызвать увеличение частоты сердечных сокращений, повышение кровяного давления и возбуждение органов чувств, за счет увеличения уровня адреналина в крови. Парасимпатическая нервная система, а свою очередь, управляет состоянием покоя, и регулирует сокращение зрачков, замедление сердечного ритма, расширение кровеносных сосудов и стимуляцию пищеварительной и мочеполовой системы.

Выше вы можете видеть логически структурированную схему, на которой приведены отделы нервной системы человека, в порядке, соответствующем вышеизложенному материалу.

Строение и функции нейронов

Все движения и упражнения контролируются нервной системой. Основной структурной и функциональной единицей нервной системы (как центральной, так и периферической) является нейрон. Нейроны – это возбудимые клетки, которые способны генерировать и передавать электрические импульсы (потенциалы действия).

Строение нервной клетки: 1- тело клетки; 2- дендриты; 3- ядро клетки; 4- миелиновая оболочка; 5- аксон; 6- окончание аксона; 7- синаптическое утолщение

Функциональной единицей нейромышечной системы является двигательная единица, которая состоит из двигательного нейрона и иннервируемых им мышечных волокон. Собственно, работа нервной системы человека на примере процесса иннервации мышц происходит следующим образом.

Клеточная мембрана нерва и мышечного волокна является поляризованной, то есть на ней существует разность потенциалов. Внутри клетки содержится высокая концентрация ионов калия (К), а снаружи – ионов натрия (Na). В покое разность потенциалов между внутренней и внешней стороной клеточной мембраны не приводит к возникновению электрического заряда. Эта определенная величина представляет собой потенциал покоя. Из-за изменений во внешнем окружении клетки потенциал на ее мембране постоянно колеблется, и если он возрастает, и клетка достигает своего электрического порога возбуждения, происходит резкое изменение электрического заряда мембраны, и она начинает проводить потенциал действия вдоль аксона к иннервируемой мышце. К слову, в крупных мышечных группах, один двигательный нерв может иннервировать до 2-3 тысяч мышечных волокон.

На схеме ниже вы можете видеть пример того, какой путь проходит нервный импульс от момента возникновения стимула до получения на него ответной реакции в каждой, отдельно взятой системе.

Нервы соединяются между собой посредством синапсов, а с мышцами – с помощью нервно-мышечных контактов. Синапс – это место контакта между двумя нервными клетками, а – процесс передачи электрического импульса от нерва к мышце.

Синаптическая связь: 1- нейронный импульс; 2- принимающий нейрон; 3- ветвь аксона; 4- синаптическая бляшка; 5- синаптическая щель; 6- молекулы нейотрансмиттера; 7- клеточные рецепторы; 8- дендрит принимающего нейрона; 9- синаптические пузырьки

Нервно-мышечный контакт: 1- нейрон; 2- нервное волокно; 3- нервно-мышечный контакт; 4- двигательный нейрон; 5- мышца; 6- миофибриллы

Таким образом, как мы уже говорили – процесс физической активности в целом и мышечного сокращения в частности является полностью подконтрольным нервной системе.

Заключение

Сегодня мы узнали о предназначении, строении и классификации нервной системы человека, а так же о том, как она связана с его двигательной активностью и как она влияет на работу всего организма в целом. Поскольку нервная система вовлечена в регуляцию деятельности всех органов и систем человеческого тела, в том числе, и возможно, в первую очередь – сердечно – сосудистой, то в следующей статье из цикла о системах организма человека, к ее рассмотрению мы и перейдем.

ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА. СПИННОМОЗГОВЫЕ НЕРВЫ

Строение нервов

Развитие спинномозговых нервов

Образование и ветвление спинномозговых нервов

Закономерности хода и ветвления нервов

Нервная система человека подразделяется на центральную, периферическую и авто-

номную части. Периферическая часть нервной системы представляет собой совокуп-

ность спинномозговых и черепных нервов. К ней относятся образуемые нервами ганглии и сплетения, а также чувствительные и двигательные окончания нервов. Таким образом, периферическая часть нервной системы объединяет все нервные образования, лежащие вне спинного и головного мозга. Такое объединение в известной мере условно, так как эфферентные волокна, входящие в состав периферических нервов, являются отростками нейронов, тела которых находятся в ядрах спинного и головного мозга. С функциональной точки зрения периферическая часть нервной системы состоит из проводников, соединяющих нервные центры с рецепторами и рабочими органами. Анатомия периферических нервов имеет большое значение для клиники, как основа для диагностики и лечения заболеваний и повреждений этого отдела нервной системы.

Периферические нервы состоят из волокон, имеющих различное строение и неодина-

ковых в функциональном отношении. В зависимости от наличия или отсутствия миелиновой оболочки волокна бывают миелиновые (мякотные) или безмиелиновые (безмякотные) (Рис. 1). По диаметру миелиновые нервные волокна подразделяются на тонкие (1-4 мкм), средние (4-8 мкм) и толстые (более 8 мкм) (Рис. 2). Существует прямая зависимость между толщиной волокна и скоростью проведения нервных импульсов. В толстых миелиновых волокнах скорость проведения нервного импульса составляет примерно 80-120 м/с, в средних – 30-80 м/с, в тонких – 10-30 м/с. Толстые миелиновые волокна являются преимущественно двигательными и проводниками проприоцептивной чувствительности, средние по диаметру волокна проводят импульсы тактильной и температурной чувствительности, а тонкие – болевой. Безмиелиновые волокна имеют небольшой диаметр – 1-4 мкм и проводят импульсы со скоростью 1-2 м/с (Рис. 3). Они являются эфферентными волокнами вегетативной нервной системы.

Таким образом, по составу волокон можно дать функциональную характеристику нерва. Среди нервов верхней конечности наибольшее содержание мелких и средних миелиновых и безмиелиновых волокон имеет срединный нерв, а наименьшее число их входит в состав лучевого нерва, локтевой нерв занимает в этом отношении среднее положение. Поэтому при повреждении срединного нерва бывают особенно выражены болевые ощущения и вегетативные расстройства (нарушения потоотделения, сосудистые изменения, трофические расстройства). Соотношение в нервах миелиновых и безмиелиновых, тонких и толстых волокон индивидуально изменчиво. Например, количество тонких и средних миелиновых волокон в срединном нерве может у разных людей колебаться от 11 до 45%.



Нервные волокна в стволе нерва имеют зигзагообразный (синусоидальный) ход, что

предохраняет их от перерастяжения и создает резерв удлинения в 12-15% от их первоначальной длины в молодом возрасте и 7-8% – в пожилом возрасте (Рис. 4).

Нервы обладают системой собственных оболочек (Рис. 5). Наружная оболочка, эпиневрий, покрывает нервный ствол снаружи, отграничивая его от окружающих тканей, и состоит из рыхлой неоформленной соединительной ткани. Рыхлая соединительная ткань эпиневрия выполняет все промежутки между отдельными пучками нервных волокон.

В эпиневрии в большом количестве находятся толстые пучки коллагеновых волокон,

идущих преимущественно продольно, клетки фибробластического ряда, гистиоциты и жировые клетки. При изучении седалищного нерва человека и некоторых животных установлено, что эпиневрия состоит из продольных, косых и циркулярных коллагеновых волокон, имеющих зигзагообразный извилистый ход с периодом 37-41 мкм и амплитудой около 4 мкм. Следовательно, эпиневрия – очень динамичная структура, которая защищает нервные волокна при растяжении и изгибе.

Нет единого мнения о природе эластических волокон эпиневрия. Одни авторы считают, что в эпиневрии отсутствуют зрелые эластические волокна, но обнаружены два вида близких к эластину волокон: окситалановые и элауниновые, которые располагаются параллельно оси нервного ствола. Другие исследователи считают их эластическими волокнами. Жировая ткань является составной частью эпиневрия.

При исследовании черепных нервов и ветвей крестцового сплетения взрослых людей

установлено, что толщина эпиневрия колеблется в пределах от 18-30 до 650 мкм, но

чаще составляет 70-430 мкм.

Эпиневрий – в основном питающая оболочка. В эпиневрии проходят кровеносные и

лимфатические сосуды, vasa nervorum , которые проникают отсюда в толщу нервного

ствола (Рис. 6).

Следующая оболочка, периневрий, покрывает пучки волокон, из которых состоит нерв Она является механически наиболее прочной. При световой и электронной

микроскопии установлено, что периневрий состоит из нескольких (7-15) слоев плоских клеток (периневрального эпителия, нейротелия) толщиной от 0.1 до 1.0 мкм, между которыми располагаются отдельные фибробласты и пучки коллагеновых волокон. Установлено, что пучки коллагеновых волокон имею в периневрии плотное расположение и ориентированы как в продольном, так и концентрическом направлениях. Тонкие коллагеновые волокна образуют в периневрии двойную спиральную систему. Причем волокна образуют в периневрии волнистые сети с периодичностью около 6 мкм. В периневрии найдены элауниновые и окситалановые волокна, ориентированные преимущественно продольно, причем первые в основном локализуются в поверхностном его слое, а вторые – в глубоком слое.

Толщина периневрия в нервах с многопучковой структурой находится в прямой зависимости от величины покрываемого им пучка: вокруг мелких пучков не превышает 3-5 мкм, крупные пучки нервных волокон покрываются периневральным футляром толщиной от 12-16 до 34-70 мкм. Данные электронной микроскопии свидетельствуют, что периневрий имеет гофрированную, складчатую организацию. Периневрию придается большое значение в барьерной функции и обеспечении прочности нервов. Периневрий, внедряясь в толщу нервного пучка, образует там соединительнотканные перегородки толщиной 0.5-6.0 мкм, которые делят пучок на части. Подобная сегментация пучков чаще наблюдается в поздних периодах онтогенеза.

Периневральные влагалища одного нерва соединяются с периневральными влагали-

щами соседних нервов, и через эти соединения происходит переход волокон из одного нерва в другой. Если учесть все эти связи, то периферическую нервную систему верхней или нижней конечности можно рассматривать как сложную систему связанных между собой периневральных трубок, по которым осуществляется переход и обмен нервных волокон как между пучками в пределах одного нерва, так и между соседними нервами. Самая внутренняя оболочка, эндоневрий, покрывает тонким соединительнотканным

футляром отдельные нервные волокна (Рис. 8). Клетки и внеклеточные структуры эн-

доневрия вытянуты и ориентированы преимущественно по ходу нервных волокон. Количество эндоневрия внутри периневральных футляров по сравнению с массой нервных волокон невелико.

Нервные волокна сгруппированы в отдельные пучки различного калибра. У разных авторов существуют различные определения пучка нервных волокон в зависимости от позиции, с которой эти пучки рассматриваются: с точки зрения нейрохирургии и микрохирургии или с точки зрения морфологии. Классическим определением нервного пучка является группа нервных волокон, ограниченная от других образований нервногоствола периневральной оболочкой. И этим определением руководствуются при исследовании морфологи. Однако при микроскопическом исследовании нервов часто наблюдаются такие состояния, когда несколько групп нервных волокон, прилежащих друг к другу, имеют не только собственные периневральные оболочки, но и окружены об-

щим периневрием. Эти группы нервных пучков часто бывают видны при макроскопическом исследовании поперечного среза нерва во время нейрохирургического вмешательства. И эти пучки чаще всего описываются при клинических исследованиях. Из-за различного понимания строения пучка происходят в литературе противоречия при описании внутриствольного строения одних и тех же нервов. В связи с этим ассоциации нервных пучков, окруженные общим периневрием, получили название первичных пучков, а более мелкие, их составляющие, – вторичных пучков. На поперечном срезе нервов человека соединительнотканные оболочки (эпиневрий периневрий) занимают значительно больше места (67-84%), чем пучки нервных волокон. Показано, что количество соединительной ткани зависит от числа пучков в нерве.

Ее значительно больше в нервах с большим количеством мелких пучков, чем в нервах с немногими крупными пучками.

В зависимости от строения пучков выделяют две крайние формы нервов: малопучко-

вую и многопучковую. Первая характеризуется небольшим количеством толстых пучков и слабым развитием связей между ними. Вторая состоит их множества тонких пучков с хорошо развитыми межпучковыми соединениями.

Когда количество пучков небольшое, пучки имеют значительные размеры, и наоборот.

Малопучковые нервы отличаются сравнительно небольшой толщиной, наличием не-

большого количества крупных пучков, слабым развитием межпучковых связей, частым расположением аксонов внутри пучков. Многопучковые нервы отличаются большей толщиной и состоят из большого количества мелких пучков, в них сильно развиты межпучковые связи, аксоны располагаются в эндоневрии рыхло.

Толщина нерва не отражает количества содержащихся в нем волокон, и не существует закономерностей расположения волокон на поперечном срезе нерва. Однако установлено, что в центре нерва пучки всегда тоньше, на периферии – наоборот. Толщина пучка не характеризует количества заключенных в нем волокон.

В строении нервов установлена четко выраженная асимметрия, то есть неодинаковое

строение нервных стволов на правой и левой сторонах тела. Например, диафрагмаль-

ный нерв имеет слева большее количество пучков, чем справа, а блуждающий нерв

наоборот. У одного человека разница в количестве пучков между правым и левым срединными нервами может варьировать от 0 до 13, но чаще составляет 1-5 пучков. Разница в количестве пучков между срединными нервами разных людей равняется 14-29 и с возрастом увеличивается. В локтевом нерве у одного и того же человека разница между правой и левой сторонами в количестве пучков может колебаться от 0 до 12, но чаще составляет также 1-5 пучков. Различие в количестве пучков между нервами разных людей достигает 13-22.

Разница между отдельными субъектами в количестве нервных волокон колеблется в

срединном нерве от 9442 до 21371, в локтевом нерве – от 9542 до 12228. У одного и того же человека разница между правой и левой стороной варьирует в срединном нерве от 99 до 5139, в локтевом нерве – от 90 до 4346 волокон.

Источниками кровоснабжения нервов являются соседние близлежащие артерии и их

ветви (Рис. 9). К нерву обычно подходят несколько артериальных ветвей, причем ин-

тервалы между входящими сосудами варьируют в крупных нервах от 2-3 до 6-7 см, а в седалищном нерве – до 7-9 см. Кроме того, такие крупные нервы, как срединный и седалищный, имеют собственные сопровождающие артерии. В нервах, имеющих большое количество пучков, в эпиневрии содержится много кровеносных сосудов, причем они имеют сравнительно малый калибр. Наоборот, в нервах с небольшим количеством пучков сосуды одиночные, но значительно более крупные. Артерии, питающие нерв, в эпиневрии Т-образно делятся на восходящую и нисходящую ветви. Внутри нервов артерии делятся до ветвей 6-го порядка. Сосуды всех порядков анастомозируют между собой, образуя внутриствольные сети. Эти сосуды играют значительную роль в развитии коллатерального кровообращения при выключении крупных артерий. Каждая артерия нерва сопровождается двумя венами.

Лимфатические сосуды нервов находятся в эпиневрии. В периневрии между его слоями образуются лимфатические щели, сообщающиеся с лимфатическими сосудами эпиневрия и эпиневральными лимфатическими щелями. Таким образом, по ходу нервов может распространяться инфекция. Из больших нервных стволов обычно выходят несколько лимфатических сосудов.

Оболочки нервов иннервируются ветвями, отходящими от данного нерва. Нервы нервов имеют в основном симпатическое происхождение и по функции являются сосудодвигательными.

16-09-2012, 21:50

Описание

В периферической нервной системе различают следующие компоненты:
  1. Ганглии.
  2. Нервы.
  3. Нервные окончания и специализированные органы чувств.

Ганглии

Ганглии представляют собой скопление нейронов, формирующих в анатомическом смысле небольшие узелки различного размера, разбросанные в различных участках тела. Различают два типа ганглиев - цереброспинальные и вегетативные. Тела нейронов спинномозговых ганглиев, как правило, округлой формы и различного размера (от 15 до 150 мкм). Ядро располагается в центре клетки и содержит четкое круглое ядрышко (рис. 1.5.1).

Рис. 1.5.1. Микроскопическое строение интрамурального ганглия (а) и цитологические особенности ганглиозных клеток (б): а - группы ганглиозных клеток, окруженные волокнистой соединительной тканью. Снаружи ганглий покрыт капсулой, к которой прилежит жировая клетчатка; б-нейроны ганглия (1- влючение в цитоплазме ганглиозной клетки; 2 - гипертрофированое ядрышко; 3 - клетки-сателлиты)

Каждое тело нейрона отделено от окружающей соединительной ткани прослойкой уплощенных капсулярных клеток (амфицитов). Их можно отнести к клеткам глиальной системы. Проксимальный отросток каждой ганглиозной клетки в заднем корешке разделяется на две ветви. Одна из них вливается в спинномозговой нерв, в котором проходит к рецепторному окончанию. Вторая входит в задний корешок и достигает заднего столба серого вещества на той же стороне спинного мозга.

Ганглии вегетативной нервной системы по строению сходны с цереброспинальными ганглиями. Наиболее существенное отличие сводится к тому, что нейроны вегетативных ганглиев мультиполярны. В области глазницы обнаруживаются различные вегетативные ганглии, обеспечивающие иннервацию глазного яблока.

Периферические нервы

Периферические нервы являются четко определяемыми анатомическими образованиями и довольно прочны. Нервный ствол окутывается снаружи соединительнотканным футляром на всем протяжении. Этот наружный футляр называют эпинервием. Группы из нескольких пучков нервных волокон окружаются периневрием. От периневрия отделяются тяжи рыхлой волокнистой соединительной ткани, окружающие отдельные пучки нервных волокон. Это эндоневрий (рис. 1.5.2).

Рис. 1.5.2. Особенности микроскопического строения периферического нерва (продольный срез): 1- аксоны нейронов: 2- ядра шванновских клеток (леммоциты); 3-перехват Ранвье

Периферические нервы обильно снабжены кровеносными сосудами.

Периферический нерв состоит из различного количества плотно упакованных нервных волокон, являющихся цитоплазматическими отростками нейронов. Каждое периферическое нервное волокно покрыто тонким слоем цитоплазмы - неврилеммой, или шванновской оболочкой . Шванновские клетки (леммоциты), участвующие в формировании этой оболочки, происходят из клеток нервного гребня.

В некоторых нервах между нервным волокном и шванновской клеткой располагается слой миелина . Первые называются миелинизированными, а вторые - немиелинизированными нервными волокнами.

Миелин (рис. 1.5.3)

Рис. 1.5.3. Периферический нерв. Перехваты Ранвье: а - светооптическая микроскопия. Стрелкой указан перехват Ранвье; б-ультраструктурные особенности (1-аксоплазма аксона; 2- аксолемма; 3 - базальная мембрана; 4 - цитоплазма леммоцита (шванновская клетка); 5 - цитоплазматическая мембрана леммоцита; 6 - митохондрия; 7 - миелиновая оболочка; 8 - нейрофилламенты; 9 - нейротрубочки; 10 - узелковая зона перехвата; 11 - плазмолемма леммоцита; 12 - пространство между соседними леммоцитами)

покрывает нервное волокно не сплошь, а через определенное расстояние прерывается. Участки прерывания миелина обозначаются перехватами Ранвье. Расстояние между последовательными перехватами Ранвье варьирует от 0,3 до 1,5 мм. Перехваты Ранвье имеются и в волокнах центральной нервной системы, где миелин образует олигодендроциты (см. выше). Нервные волокна разветвляются именно в перехватах Ранвье.

Каким образом формируется миелиновая оболочка периферических нервов ? Первоначально шванновская клетка обхватывает аксон, так что он располагается в желобке. Затем эта клетка как бы наматывается на аксон. При этом участки цитоплазматической мембраны по краям желобка вступают в контакт друг с другом. Обе части цитоплазматической мембраны остаются соединенными, и тогда видно, что клетка продолжает обматывать аксон по спирали. Каждый виток на поперечном разрезе имеет вид кольца, состоящего из двух линий цитоплазматической мембраны. По мере наматывания цитоплазма шванновской клетки выдавливается в тело клетки.

Некоторые афферентные и вегетативные нервные волокна не имеют миелиновой оболочки. Тем не менее они защищены шванновскими клетками. Это происходит благодаря вдавливанию аксонов в тело шванновских клеток.

Механизм передачи нервного импульса в немиелинизированном волокне освещен в руководствах по физиологии. Здесь мы лишь кратко охарактеризуем основные закономерности процесса.

Известно, что цитоплазматическая мембрана нейрона поляризованна , т. е. между внутренней и наружной поверхностью мембраны существует электростатический потенциал, равный - 70 мВ. Причем внутренняя поверхность обладает отрицательным, а наружная положительным зарядом. Подобное состояние обеспечивается действием натрий-калиевого насоса и особенностями белкового состава внутрицитоплазматического содержимого (преобладание отрицательно заряженных белков). Поляризованное состояние называют потенциалом покоя.

При стимуляции клетки, т. е. нанесении раздражения цитоплазматической мембраны самыми разнообразными физическими, химическими и др. факторами, первоначально наступает деполяризация, а затем реполяризация мембраны . В физико-химическом смысле при этом наступает обратимое изменение в цитоплазме концентрации ионов К и Na. Процесс реполяризации активный с использованием энергетических запасов АТФ.

Волна деполяризации - реполяризации распространяется вдоль цитоплазматической мембраны (потенциал действия). Таким образом, передача нервного импульса есть не что иное, как распространяющаяся волна потенциала действи я.

Каково же значение в передаче нервного импульса миелиновой оболочки? Выше указано, что миелин прерывается в перехватах Ранвье. Поскольку только в перехватах Ранвье цитоплазматическая мембрана нервного волокна контактирует с тканевой жидкостью, только в этих местах возможна деполяризация мембраны таким же образом, как в немиелинизированных волокнах. На остальном протяжении этот процесс невозможен в связи с изолирующими свойствами миелина. В результате этого между перехватами Ранвье (от одного участка возможной деполяризации до другого) передача нервного импульса осуществляется внутрицитоплазматическими местными токами . Поскольку электрический ток проходит гораздо быстрее, чем непрерывная волна деполяризации, передача нервного импульса в миелинизированном нервном волокне происходит значительно быстрее (в 50 раз), причем скорость увеличивается с увеличением диаметра нервного волокна, что обусловлено снижением внутреннего сопротивления. Подобный тип передачи нервного импульса называется сальтаторным. т. е. прыгающим. Исходя из изложенного, видно важное биологическое значение миелиновых оболочек.

Нервные окончания

Афферентные (чувствительные) нервные окончания (рис. 1.5.5, 1.5.6).

Рис. 1.5.5. Особенности строения различных рецепторных окончаний: а - свободные нервные окончания; б- тельце Мейснера; в - колба Краузе; г - тельце Фатер-Пачини; д - тельце Руффини

Рис. 1.5.6. Строение нервно-мышечного веретена: а-моторная иннервация интрафузальных и экстрафузальных мышечных волокон; б спиральные афферентные нервные окончания вокруг интрафузальных мышечных волокон в области ядерных сумок (1 - нервно-мышечные эффекторные окончания экстрафузальных мышечных волокон; 2 - моторные бляшки интрафузальных мышечных волокон; 3 - соединительнотканная капсула; 4 - ядерная сумка; 5 - чувствительные кольцеспиральные нервные окончания вокруг ядерных сумок; 6 - скелетные мышечные волокна; 7 - нерв)

Афферентные нервные окончания представляют собой концевые аппараты дендритов чувствительных нейронов, повсеместно располагающихся во всех органах человека и дающие информацию центральной нервной системе об их состоянии. Воспринимают они раздражения, исходящие и из внешней среды, преобразуя их в нервный импульс. Механизм возникновения нервного импульса характеризуется уже описанными явлениями поляризации и деполяризации цитоплазматической мембраны отростка нервной клетки.

Существует ряд классификаций афферентных окончаний - в зависимости от специфичности раздражения (хеморецепторы, барорецепторы, механорецепторы, терморецепторы и др.), от особенностей строения (свободные нервные окончания и несвободные).

Обонятельные, вкусовые, зрительные и слуховые рецепторы, а также рецепторы, воспринимающие движение частей тела относительно направления силы тяжести, называют специальными органами чувств . В последующих главах этой книги мы подробно остановимся только на зрительных рецепторах.

Рецепторы разнообразны по форме, строению и функциям . В данном разделе нашей задачей не является подробное описание различных рецепторов. Упомянем лишь о некоторых из них в разрезе описания основных принципов строения. При этом необходимо указать на различия свободных и несвободных нервных окончаний. Первые характеризуются тем, что они состоят только из ветвления осевых цилиндров нервного волокна и клетки глии. При этом они контактируют разветвлениями осевого цилиндра с клетками, возбуждающими их (рецепторы эпителиальных тканей). Несвободные нервные окончания отличаются тем, что в своем составе они содержат все компоненты нервного волокна. Если они покрыты соединительнотканной капсулой, они называются инкапсулированными (тельце Фатер-Пачини, осязательное тельце Мейснера, терморецепторы колбы Краузе, тельца Руффини и др.).

Разнообразно строение рецепторов мышечной ткани, часть которых обнаруживается в наружных мышцах глаза. В этой связи на них мы остановимся более подробно. Наиболее распространенным рецептором мышечной ткани является нервно-мышечное веретено (рис. 1.5.6). Это образование регистрирует растяжение волокон поперечно-полосатых мышц. Представляют они собой сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией. Число веретен в мышце зависит от ее функции и тем выше, чем более точными движениями она обладает. Нервно-мышечное веретено располагается вдоль мышечных волокон. Веретено покрыто тонкой соединительнотканной капсулой (продолжение периневрия), внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов:

  • волокна с ядерной сумкой - в расширенной центральной части которых содержатся скопления ядер (1-4- волокна/веретено);
  • волокна с ядерной цепочкой - более тон кие с расположением ядер в виде цепочки в центральной части (до 10 волокон/веретено).

Чувствительные нервные волокна образуют кольцеспиральные окончания на центральной части интрафузальных волокон обоих типов и гроздьевидные окончания у краев волокон с ядерной цепочкой.

Двигательные нервные волокна - тонкие, образуют мелкие нервно-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Рецепторами растяжения мышцы являются также нервно-сухожильные веретена (сухожильные органы Гольджи). Это веретеновидные инкапсулированные структуры длиной около 0,5-1,0 мм. Располагаются они в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждое веретено образовано капсулой из плоских фиброцитов (продолжение периневрия), которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых леммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные нервные окончания несут информацию от центральной нервной системы к исполнительному органу. Это окончания нервных волокон на мышечных клетках, железах и др. Более подробное их описание будет приведено в соответствующих разделах. Здесь мы подробно остановимся лишь на нервно-мышечном синапсе (моторная бляшка). Моторная бляшка располагается на волокнах поперечнополосатых мышц. Состоит она из концевого ветвления аксона, образующего пресинаптическую часть, специализированного участка на мышечном волокне, соответствующего постсинаптической части, и разделяющей их синаптической щели. В крупных мышцах один аксон иннервирует большое количество мышечных волокон, а в небольших мышцах (наружные мышцы глаза) каждое мышечное волокно или их небольшая группа иннервируется одним аксоном. Один мотонейрон в совокупности с иннервируемыми им мышечными волокнами образует двигательную единицу.

Пресинаптическая часть формируется следующим образом . Вблизи мышечного волокна аксон утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными леммоцитами и базальной мембраной, переходящей с мышечного волокна. В терминалах аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

Синаптическая щель имеет ширину 50 нм. Располагается она между плазмолеммой ветвлений аксона и мышечного волокна. Содержит она материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели). Эти складки увеличивают общую площадь щели и заполнены материалом, являющимся продолжением базальной мембраны. В области нервно-мышечного окончания мышечное волокно не имеет исчерченности. содержит многочисленные митохондрии, цистерны шероховатого эндоплазматического ретикулума и скопление ядер.

Механизм передачи нервного импульса на мышечное волокно сходен с таковым в химическом межнейронном синапсе. При деполяризации пресинаптической мембраны происходит выделение ацетилхолина в синаптическую щель. Связывание ацетилхолина с холинорецепторами в постсинаптической мембране вызывает ее деполяризацию и последующее сокращение мышечного волокна. Медиатор отщепляется от рецептора и быстро разрушается ацетил-холинэстеразой.

Регенерация периферических нервов

При разрушении участка периферического нерва в течение недели наступает восходящая дегенерация проксимальной (ближайшей к телу нейрона) части аксона с последующим некрозом как аксона, так и шванновской оболочки. На конце аксона формируется расширение (ретракционная колба). В дистальной части волокна после его перерезки отмечается нисходящая дегенерация с полным разрушением аксона, распадом миелина и последующим фагоцитозом детрита макрофагами и глией (рис. 1.5.8).

Рис. 1.5.8. Регенерация миелинового нервного волокна: а - после перерезки нервного волокна проксимальная часть аксона (1) подвергается восходящей дегенерации, миелиновая оболочка (2) в области повреждения распадается, перикарион (3) нейрона набухает, ядро смещается к периферии, хромафильная субстанция (4) распадается; б-дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами (5) и глией; в - леммоциты (6) сохраняются и митотически делятся, формируя тяжи - ленты Бюгнера (7), соединяющиеся с аналогичными образованиями в проксимальной части волокна (тонкие стрелки). Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки (жирная стрелка), растущие вдоль ленты Бюгнера; г - в результате регенерации нервного волокна восстанавливается связь с органом-мишенью и регрессирует ее атрофия: д - при возникновении преграды (8) на пути регенерирующего аксона компоненты нервного волокна формируют травматическую неврому (9), которая состоит из разрастающихся веточек аксона и леммоцитов

Начало регенерации характеризуется сначала пролиферацией шванновских клеток , их передвижением вдоль распавшегося волокна с образованием клеточного тяжа, лежащего в эндоневральных трубках. Таким образом, шванновские клетки восстанавливают структурную целостность в месте разреза . Фибробласты также пролиферируют, но медленнее шванновских клеток. Указанный процесс пролиферации шванновских клеток сопровождается одновременной активацией макрофагов, которые первоначально захватывают, а затем лизируют оставшийся в результате разрушения нерва материал.

Следующий этап характеризуется прорастанием аксонов в щели , образованные шванновскими клетками, проталкиваясь от проксимального конца нерва к дистальному. При этом от ретракционной колбы в направлении дистальной части волокна начинают отрастать тонкие веточки (конусы роста). Регенерирующий аксон растет в дистальном направлении со скоростью 3-4 мм сут вдоль лент из шванновских клеток (ленты Бюгнера), которые играют направляющую роль. В последующем наступает дифференциация шванновских клеток с образованием миелина и окружающей соединительной ткани. Коллатерали и терминали аксонов восстанавливаются в течение нескольких месяцев. Регенерация нервов происходит только при условии отсутствия повреждения тела нейрона , небольшом расстоянии между поврежденными концами нерва, отсутствии между ними соединительной ткани. При возникновении преграды на пути регенерирующего аксона развивается ампутационная нейрома. Регенерация нервных волокон в центральной нервной системе отсутствует.

Статья из книги: .

Периферическая нервная система состоит из нервов, идущих из спинного и головного мозга , которые ответственны за передачу импульсов от органов тела и команд от нервных центров для контролирования жизнедеятельности всего тела.


Нерв состоит из множества нервных волокон: аксонов, или продолжений нейронов, клеток нейроглии и других соединений, ответственных за их защиту и поддержание активности. Нервные нити сгруппированы в пучки, покрытые соединительной тканью, каждый из которых состоит из различных связок, составляющих нерв и покрытых, в свою очередь, внешней оболочкой, называемой эпиневрием.

В отличие от произвольных действий, контролируемых мозгом, существуют действия и движения, которые производятся автоматически, без участия высших нервных центров. Такие действия выполняются через круг, называемый рефлекторной дугой, состоящей из рецепторов, распознающих импульс, нервных волокон, передающих импульс в спинной мозг , где вырабатывается ответ, и нервных волокон, передающих команды органам, их выполняющим. Например, коленный рефлекс: коленное сухожилие растягивается, и нога разгибается автоматически. Другие рефлексы более сложные, и в их образовании принимает участие мозговой ствол: например, рефлекс мочеиспускания, действующий тогда, когда мочевой пузырь, который до определенного момента мы можем контролировать, наполнен мочой.


12 пар нервов , ядра которых расположены в головном мозге, отходят от мозга или мозгового ствола: поскольку нервы выходят с каждой стороны головного мозга, они называются мозговыми парами, и хотя каждый нерв имеет свое название, их обозначают римскими цифрами от I до XII. Эти нервы очень важны, поскольку некоторые из них, такие как зрительный или слуховой нерв, получают сенсорные импульсы, тогда как другие контролируют движение глаз или принимают участие в пищеварительной, сердечной и дыхательной деятельности.


Пара I;Обонятельный ;Передает обонятельные импульсы от носовых пазух к мозгу;
Пара II;Зрительный ;Передает зрительные импульсы от сетчатки глаза в мозг;
Пара III;Глазодвигательный
Пара IV;Блоковый ;Принимает участие в контроле движений глаз;
Пара V;Тройничный ;Передает сенсорные импульсы от лица в мозг и принимает участие в контроле над пережевыванием пищи;
Пара VI;Отводящий ;Принимает участие в контроле движений глаз;
Пара VII;Лицевой ;Контролирует движения лицевых мышц и передает вкусовые импульсы от языка к мозгу;
Пара VIII;Преддверно-улитковый ;Передает слуховые импульсы и импульсы, которые позволяют контролировать равновесие, из внутреннего уха в мозг;
Пара IX;Языкоглоточный ;Контролирует движения мышц глотки и передает вкусовые импульсы от языка к мозгу;
ПараХ;Блуждающий ;Контролирует движения мышц глотки и гортани и принимает участие в регулировании деятельности органов шеи, груди (сердце , дыхание) и брюшины (пищеварительная система);
Пара XI;Спинной ;Контролирует движения мышц шеи, плеч и гортани;
Пара XII;Подъязычный ;Контролирует движения языка.

От нервных клеток, находящихся в головном и спинном мозгу, отходят отростки, которые и являются нервными волокнами, идущими к периферии. Нервные волокна собираются в пучки разной толщины. Такое скопление нервных волокон называется нервом.

Нервы осуществляют связь между центральной нервной системой и отдельными органами нашего тела. По нервам возбуждение идет либо из центральной нервной системы к рабочему органу, либо от разных участков нашего тела в центральную нервную систему.

Нервы делятся на две группы в зависимости от того, в каком направлении они проводят возбуждение.

Рис. Схема распространения возбуждения при раздражении нерва

Одна группа нервов проводит возбуждение из центральной нервной системы к рабочим органам. Они называются эфферентными (центробежными, или двигательными) нервами. Другая группа проводит возбуждение с разных участков нашего тела и от разных органов в центральную нервную систему. В отличие от предыдущей группы нервов они получили название афферентных (центростремительных, или чувствительных) нервов. Оба рода нервных волокон часто идут в одном стволе, поэтому большинство нервов являются смешанными.

СТРОЕНИЕ НЕРВА

Состоит из нервных клеток, которые называются нейронами. Нейрон состоит из тела нервной клетки и ее отростков. Различают два вида отростков: а) отростки короткие, ветвистые - дендриты, и б) очень длинный отросток, который тянется от центральной нервной системы до рабочего органа,- а к с о н, который участвует в формировании нервов.

Наконец, имеются еще и особые образования на окончаниях нервов- так называемые концевые аппараты, при помощи которых осуществляется связь нервного волокна с мышцей, железой или другими органами, или рецепторы - окончания центростремительных нервов, воспринимающие раздражение.

Короткие отростки - дендриты - осуществляют связь между отдельными нервными клетками и почти не выходят за пределы центральной нервной системы.

Аксон же тянется из головного или спинного мозга до рабочего органа. Нервы, которые мы встречаем в организме, состоят из аксонов, несущих возбуждение в центральную нервную систему или, наоборот, из центральной нервной системы.

Нормальное протекание обмена веществ во всех отростках нервной клетки связано с ее целостностью. В этом можно убедиться, если перерезать нервное волокно и тем самым нарушить его связь с телом клетки. Деятельность такого волокна нарушается, и та часть, которая отрезана от клетки, отмирает. Совершенно иные явления наблюдаются в той части волокна, которая осталась связанной с телом клетки. Эта часть продолжает жить, нормально функционирует, не нарушен. Более того, такой отрезок растет и через некоторое, время может дойти до мышцы, чем и восстановится целость, нерва. Этим объясняется наблюдающееся иногда восстановле ние движений парализованной конечности через определенный промежуток времени, если паралич был вызван поражением нерва.

Такой особенностью пользуются и хирурги, которые часто производят сшивание нервов с целью восстановления деятельности парализованного органа.

Нервная возбуждается под влиянием тех волн возбуждения, которые поступают с периферии по центростремительным нервам. Однако многие нервные клетки могут возбуждаться даже без поступления импульсов с рецепторов. В этих клетках возбуждение может возникнуть под влиянием гуморальных воздействий. Примером может служить деятельность теплового центра, на функции которого влияет температура крови, и др.

СВОЙСТВА НЕРВНОГО ВОЛОКНА

Нервное волокно обладает возбудимостью и проводимостью. В этом можно убедиться, если нанести электрическое раздражение какому-либо участку нерва нервно-мышечного препарата. Почти тотчас после нанесения раздражения мышца сокращается. Сокращение мышцы стало возможным потому, что при раздражении в нерве возникло возбуждение, которое, пройдя по нерву, поступило к мышце и обусловило ее деятельность.

Для проведения возбуждения необходима анатомическая целость нервного волокна. Перерезка нерва делает невозможной передачу возбуждения. Возбуждение не проводится в случае перевязки, сдавливания или нарушения целости нерва любым иным способом. Однако не только анатомические, но и физиологические нарушения вызывают прекращение про ведения. Нерв может быть целым, но он не будет проводить возбуждения, так как его функ ции нарушены.

Нарушение проведения мож но наблюдать при охлаждении или нагревании нерва, прекращении его кровоснабжения, от равлении и т. д.

Проведение возбуждения по нерву подчиняется двух основ ным законам.

1. Закон двустороннего проведения . Нервное волокно обладает способностью проводить возбуждение по двум направлениям: центростремительно и центробежно. Независимо от того, какое это нервное волок но - центробежное или центростремительное, если ему нанести раздражение, возникшее возбуждение будет распространяться в обе стороны от места раздражения (рис.). Это свойство нервного волокна впервые открыл выдающийся русский ученый Р. И. Бабухин (1877).

2. Закон изолированного проведения. Периферический нерв состоит из большого числа отдельных нервных волокон, которые вместе идут в одном и том же нервном стволе. В нервном стволе одновременно могут проходить самые разнообразные центробежные и центростремительные нервные волокна. Однако возбуждение, которое передается по одному нервному волокну, не передается на соседние. Благодаря такому изолированному проведению возбуждения по нервному волокну возможны отдельные весьма тонкие движения человека. Художник может создавать свои полотна, музыкант - исполнять сложные музыкальные произведения, хирург - производить тончайшие операции потому, что каждое волокно изолированно передает импульс мышце, и тем самым центральная имеет возможность координировать мышечные сокращения. Если бы возбуждение могло переходить на другие волокна, стало бы невозможным отдельное мышечное сокращение, каждое возбуждение сопровождалось бы сокращением самых разнообразных мышц.



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух