Конденсатор вместо аккумулятора: техническое решение. Холодный пуск двс

Конденсатор вместо аккумулятора: техническое решение. Холодный пуск двс

Суперконденсатор, также известный как ультраконденсатор или двухслойный конденсатор, отличается от обычного конденсатора тем, что имеет очень большую емкость. Конденсатор хранит энергию с помощью статического заряда, в противовес электрохимическим реакциям батареи. Применение дифференциального напряжения на положительную и отрицательную пластины заряжает конденсатор. Это похоже на накопление статического заряда при трении. Прикосновение же к пластине конденсатора высвободит энергию.

Существует три типа конденсаторов, основным среди них является электростатический конденсатор с сухим сепаратором. Эта классическая модель конденсатора имеет очень маленькую емкость и в основном используется в радиоэлектронике. Емкость конденсатора измеряется в фарадах и для электростатического колеблется в диапазоне пикофарад (пФ).

Следующий тип конденсатора - электролитический, он обеспечивает более высокую емкость в сравнении электростатическим и оценивается в микрофарадах (мкФ), что в миллион раз больше пикофарада. Сепаратор в таких конденсаторах влажного типа. Как и в электрических батареях, конденсаторы имеют разные полюса, которые необходимо соблюдать при использовании.

Третий тип – это суперконденсатор, его емкость оценивается в фарадах и в тысячи раз больше емкости электролитического. Суперконденсатор используется для хранения энергии, подвергающейся частым циклам заряда/разряда при высоких значениях силы тока и короткой длительности.

Единица измерения емкости фарад, названа так в честь английского физика Майкла Фарадея (1791-1867). Один фарад хранит один кулон электрического заряда при напряжении один вольт. Один микрофарад в миллион раз меньше фарада, а пикофарад в миллион раз меньше микрофарада.

Инженеры General Electric начали экспериментировать с ранней версией суперконденсатора еще в 1957 году, но коммерческого интереса эти разработки не вызвали. В 1966 году Standart Oil заново случайно обнаружили эффект двухслойного конденсатора во время работы с экспериментальными конструкциями топливных элементов. Двухслойная структура значительно улучшала способность накапливать энергию. Технология снова не была коммерциализирована и лишь 1990-х нашла свое применение.

Развитие суперконденсаторов тесно переплетено с технологиями электрохимических источников тока, именно оттуда были позаимствованы специальные электроды и электролит. В то время как основной электрохимический двухслойный конденсатор (EDLC) зависит от электростатического действия, асимметричный двухслойный электрохимический конденсатор (AEDLC) использует батарееподобные электроды для получения более высокой плотности энергии, но это ограничивает его жизненный цикл и наделяет ограничениями, схожими на ограничения электрохимического источника тока. Многообещающим выглядит использование графена в качестве материала электрода, но исследования в этом направлении пока только ведутся.

Было испробовано много типов электродов, и наиболее распространенной системой электрохимического двухслойного суперконденсатора сегодня является версия на основе углерода с органическим электролитом. Неоспоримым преимуществом такого суперконденсатора является простота изготовления.

Все конденсаторы имеют предел напряжения. В то время как электростатический конденсатор является высоковольтным, суперконденсатор ограничен напряжением в 2,5-2,7 В. Повышение значения напряжения выше этого уровня возможно, но негативно сказывается на продолжительности срока службы. Поэтому для получения более высокого напряжения используют последовательное соединение нескольких суперконденсаторов. В свою очередь, последовательное соединение уменьшает общую емкость и увеличивает внутреннее сопротивление. Такое соединение более чем трех конденсаторов требует дополнительной балансировки для избежания перенапряжения отдельной ячейки. Похожим образом реализована система защиты литий-ионного аккумулятора.

Возьмите источник тока с номинальным напряжением 6 В и напряжением отсечки 4,5 В. Если этот источник тока – суперконденсатор, то из-за своего линейного характера разряда он достигнет точки отсечки еще в первой четверти цикла, остальные три четверти энергетического резерва будут недоступными для использования. Можно конечно дополнительно использовать преобразователь напряжения - он позволит пользоваться источником питания и с низким значением напряжения, но это добавляет дополнительные расходы и приводит к потерям энергии. Электрическая же батарея имеет график разряда в виде относительно прямой линии, что позволяет использовать от 90 до 95 % накопленной в ней энергии.

На рисунках 1 и 2 показаны характеристики тока и напряжения при заряде и разряде суперконденсатора. При зарядке напряжение увеличивается линейно, а ток проседает, когда конденсатор полностью зарядился, вследствие этого даже отпадает необходимость использования системы детектирования полного заряда. При разрядке напряжение уменьшается также линейно. Для поддержания постоянного уровня потребляемой мощности при падении напряжения, преобразователь напряжения будет потреблять все большую силу тока. Разряд будет достигнут, когда нагрузочные требования больше не могут быть удовлетворены.

Рисунок 1: Зарядные характеристики суперконденсатора. Напряжение линейно растет при постоянном уровне тока заряда. При полном заполнении конденсатора зарядный ток падает.

Рисунок 2: Разрядные характеристики суперконденсатора. При разряде напряжение снижается линейно. Опциональный преобразователь напряжения может поддерживать определенный показатель напряжения, но это увеличивает показатель силы тока разряда.

Время зарядки суперконденсатора составляет от 1 до 10 секунд. Зарядные характеристики аналогичны характеристикам электрохимических батарей, и в значительной степени ограничены допустимой силой тока зарядного устройства. Суперконденсатор невозможно зарядить сверх его емкости, вследствие этого ему не нужна система детектирования полного заряда - ток просто перестает течь в него.

В таблице 3 сравниваются суперконденсатор и стандартный литий-ионный аккумулятор.

Характеристики Суперконденсатор Стандартный литий-ионный аккумулятор
Время зарядки 1-10 секунд 10-60 минут
Количество циклов 1 миллион или 30 тысяч часов 500 и выше
Напряжение ячейки От 2,3 до 2,75 В 3,6 В номинал
Удельная энергоемкость (Вт*ч/кг) 5 (стандартно) 120-240
Удельная мощность (Вт/кг) до 10 тысяч 1000-3000
Стоимость килограмм ватта $ 10000 (стандартно) $ 250-1000 (большие системы)
Время жизни 10-15 лет от 5 до 10 лет
Допустимый зарядный диапазон температур от -40°С до 65°С от 0°С до 45°С
Допустимый разрядный диапазон температур от -40°С до 65°С от -20°С до 60°С

Таблица 3: Сравнение производительности суперконденсатора и литий-ионного аккумулятора.

Суперконденсатор может заряжаться и разряжаться практически неограниченное число раз. В отличии от электрохимической батареи, в которую заложен жизненный цикл определенного размера, суперконденсатор практически нечувствителен к воздействию циклического режима работы. Также слабее на него действуют и возрастные изменения, связанные с деградацией материалов. При нормальных условиях емкость суперконденсатора после 10 лет эксплуатации сохраняется на уровне 80% от номинальной. Но работа с высокими напряжениями может снизить его срок жизни. Также стоит отметить преимущество суперконденсатора по температурным показателях - слабым местом всех электрохимических источников тока.

Саморазряд суперконденсатора значительно выше у обычных конденсаторов и немного превышает показатель электрохимической батареи. Причиной такого высокого саморазряда, главным образом, выступают свойства органического электролита. Для сравнения, суперконденсатор теряет половину запасенной энергии за 30-40 дней, а свинцовые и литиевые аккумуляторы саморазряжаются всего на 5% в месяц.

Применение суперконденсаторов

Суперконденсаторы являются идеальным выбором в случаях, где возникает краткосрочная потребность в питании и есть возможность быстрой зарядки. В противовес этому, электрохимические батареи оптимизированы для обеспечения относительно долгосрочного электропитания. Объединение этих двух систем в гибридный источник питания позволяет использовать сильные стороны каждой. Такие гибриды уже существуют, например, в виде союза суперконденсатора и свинцово-кислотной электрохимической системы .

Суперконденсаторы находят свое применение в системах, где необходимо обеспечение питания продолжительностью от нескольких секунд до нескольких минут, и также могут быть быстро заряжены. Подобными качествами располагает и маховик (инерционный аккумулятор), поэтому суперконденсатор может выступать ему альтернативой в определенных процессах, например, транспортной сфере.

Сегодня продолжаются испытания системы суперконденсаторов мощностью 2 мВт и системы маховиков мощностью 2,5 мВт для обеспечения движения Нью-Йоркской железной дороги (Long Island Rail Road - LIRR). Целью этих испытаний является поиск решения проблемы проседания напряжения при разгоне. Обе системы должны обеспечивать бесперебойную подачу электроэнергии определенной мощности в течение 30 секунд, а также заряжаться за такой же период времени. Главными требованиями являются колебание напряжения в диапазоне не более 10 %, низкие эксплуатационные расходы и долговечность не менее 20 лет. (Пока что больший интерес вызывали маховики, так как считается, что они более прочные и экономичные, но испытания еще продолжаются).

Япония также активно исследует и развивает использование суперконденсаторов. Уже существуют 4 мВт системы, установленные в зданиях, предназначение которых заключается в уменьшении нагрузки на электросети в часы пик. Также существуют системы, обеспечивающие кратковременное электропитание в моменты между отключением электричества и запуском резервных генераторов.

Технологии суперконденсаторов также смогли проникнуть в область электротранспорта. Возможность зарядки за счет сил торможения и способность обеспечения высоких показателей силы тока для ускорения делают суперконденсаторы крайне интересными для гибридных и электрических транспортных средств. Широкий диапазон рабочих температур и долговечность дают преимущество над электрохимическими батареями в этой сфере.

Но недостатки суперконденсаторов, такие как низкая удельная энергоемкость и высокая стоимость, побуждают некоторых разработчиков делать выбор в пользу более емкого аккумулятора за ту же стоимость. В таблице 4 приведены преимущества и недостатки суперконденсаторов.

Преимущества Практически неограниченный жизненный цикл; может быть перезаряжен миллионы раз
Высокая удельная мощность и низкое внутреннее сопротивление обеспечивают высокие токи нагрузки
Процесс зарядки занимает секунды; сам прекращает процесс зарядки
Простой процесс и условия зарядки
Безопасный, устойчивый к неправильной эксплуатации
Отличные показатели работы при низких температурах
Недостатки Низкая удельная энергоемкость
Линейный характер снижения напряжения не позволяет использовать всю накопленную энергию
Высокий саморазряд, выше, чем у электрических батарей
Низкое напряжение ячейки, необходимость последовательного соединения и балансировки систем из нескольких ячеек
Высокая стоимость ватта энергии

Большинство современных конденсаторов имеют емкость в микрофарадах или пикофарадах. Емкость Ионисторов исчисляется Фарадами.
Что бы понять насколько это много, можно вспомнить формулу по которой можно рассчитать необходимую емкость в зависимости от нагрузки.

Где
С - емкость, Ф;
I - постоянный ток разрядки, А;
U - номинальное напряжение ионистора, В;
t - время разрядки от Uном до нуля, с;

Сейчас на рынке уже есть ионисторы емкостью в десятки Фарад.
К примеру есть ионистор на 5,5 Вольта емкостью 22 Фарада. Мы зарядим его полностью и подключим лампочку на 1 Ватт (5,5 Вольт 0,18 Ампера).

Итого:
22 Фарада = 0,18 Ампера t / 5,5 Вольта
t = 672 секунды

Исходя из формулы выше наша лампочка будет гореть 672 секунды или 12 минут. Кажется что это не такая большая величина, но на самом деле мы можем использовать несколько ионисторов сразу.
Для примера существуют суперконденсаторы намного большей емкости.

К примеру на новом российском авто Ё-мобиль используются конденсаторы фирмы http://www.elton-cap.com/ .
Ионисторы этой фирмы достигают емкости в 10 000 Фарад при напряжении 1,5 Вольта. Так же они производят ячейки (модули) с несколькими ионисторами емкостью в 1000 Фарад и рабочим напряжением 15 Вольт.

К сожалению у Суперконденсаторов есть достоинства и недостатки.

Суперконденсаторы достаточно дорогие поэтому не составляют конкуренции батареям (аккумуляторам), так как конденсаторы емкостью равной емкости одного аккумулятора обойдутся вам в тысячи долларов.
Темнеменее использование суперконденсаторов в электронике более чем оправдано.
- к сожалению на контантах суперконденсаторов во время всего цикла разрядки падает напряжение, поэтому для устройств которые требуют постоянного напряжение это не применимо. Возможен вариант использования стабилизатора, но при этом устройство будет потреблять больше энергии.
- к сожалению суперконденсатор нельзя полноценно использовать вместе с аккумулятором. Если их подключить параллельно из-за внутреннего сопротивления, аккумуляторная батарея всегда будет отдавать больше тока чем конденсатор.
При этом если потребитель использует импульсный источник питания, в те моменты когда батарея и конденсатор будут отключены - батарея будет заряжать конденсатор, при этом с большими токами и щадящего режима для батареи просто не получится.
Единственный выход использовать Ионисторы как дополнительный источник питания, тоесть заряжать их во время когда сеть не нагружена и полностью отдавать их энергию в нужные моменты, после чего подключать батарею, когда энергия уже исчерпана.
Это значительно усложняет систему а значит и цену таких устройств.
Однако все так же еффективно эти конденсаторы можно использовать в системах рекуперации энергии.

Очень большое колличество циклов заряда и разряда
+ большие токи отдачи
+ Суперконденсаторы достаточно быстро заряжаются (практически моментально зависит от того какой ток может обеспечить зарядное устройство)
+ Суперконденсаторы намного меньше обычных конденсаторов и в тоже время имеют намного большую емкость.
+ широкий рабочий диаппазон температур (от -50 до + 50 градусов цельсия)

Возможно за суперконденсаторами будущее, но к сожалению на данный момент они вряд ли смогут полностью заменить аккумуляторы.



Хотя на некоторых автомобилях уже сейчас заменяются пусковые батареи на суперконденсаторы, которые куда более эффективно выполняют свои функции. В часности они отдают моментально очень большие токи которые необходимы для удачного пуска двигателя особенно в холодную погоду.

На сегодняшний день аккумуляторные технологии значительно продвинулись и стали более совершенными по сравнению с прошлым десятилетием. Но все же, пока что аккумуляторные батареи остаются расходным материалом, потому как имеют небольшой ресурс.

Мысль о том, чтобы использовать, конденсатор для накопления и хранения энергии не нова и первые эксперименты проводились с электролитическими конденсаторами. Ёмкость у электролитических конденсаторов бывает значительной – сотни тысяч микрофарад, но все же ее недостаточно для того, чтобы длительное время питать хоть и не большую нагрузку, притом присутствует значительный ток утечки, обусловленный особенностями конструкции.

Современные технологии не стоят на месте, и был изобретен ионистор, это конденсатор, имеет сверхбольшую емкость – от единиц фарад и до десятков тысяч фарад. Ионисторы емкостью единицы фарад используются в портативной электронике, для обеспечения бесперебойного питания слаботочных цепей, например микроконтроллера. А ионисторы емкостью десятки тысяч фарад используются совместно с аккумуляторами для питания различных электродвигателей. В такой комбинации ионистор позволяет уменьшить нагрузку на аккумуляторные батареи, что значительно увеличивает их срок службы аккумулятора и одновременно увеличивает стартовый ток, который способна отдать гибридная система питания двигателя.

Появилась необходимость запитать датчик температуры, таким образом, чтобы не менять в нем батарейку. Датчик питается от батареи типоразмера АА и включается для отправки данных на погодную станцию один раз в 40 секунд. В момент отправки датчик потребляет в среднем 6 мА в течение 2 секунд.

Возникла идея использовать солнечную батарею и ионистор. Исходя из выявленных характеристик потребления датчика, были взяты следующие элементы:
1. Солнечная батарея 5 Вольта и ток примерно 50 мА (Солнечная батарея Советского производства возрастом примерно 15 лет)
2. Ионистор: Panasonic 5.5 Вольт и емкостью 1 фарад.
3. Ионисторы 2 шт: DMF 5.5 Вольт и общей емкостью 1 фарад.
4. Диод Шотки с прямым падением напряжения при малом токе 0.3 В.
Диод Шотки необходим для того чтобы предотвратить разряд емкости через солнечную батарею.
Ионисторы соединены параллельно, и общая емкость составляет 2 фарады.


Фото 1.

Эксперимент №1 – Подключил микроконтроллер с монохромным ЖК-дисплеем и общим током потребления 500 мкА. Хотя микроконтроллер с дисплеем и заработали, но я заметил, что старые солнечные элементы крайне не эффективны, ток заряда в тени был недостаточным для того, чтобы хоть сколько-нибудь зарядить ионисторы, напряжение на 5ти вольтовой солнечной батареи в тени было меньше 2 вольт. (По некоторым обстоятельствам микроконтроллер с дисплеем на фото не показаны).

Эксперимент №2
Для повышения шанса на успех я приобрел на радиорынке новые солнечные элементы номиналами 2 В, током 40 мА и 100 мА, китайского производства залитые оптической смолой. Для сравнения данные батареи в тени уже выдавали 1,8 вольт, при этом не большой ток заряда, но все же заметно лучше заряжающий ионистор.
Спаяв конструкцию уже с новой батареей, диодом шотки и конденсаторами я положил ее на подоконник для того, чтобы конденсатор зарядился.
Притом, что солнечный свет напрямую не попадал на батарею, уже через 10 минут конденсатор зарядился до 1,95 В. Взял датчик температуры, вынул из него батарею и подключил ионистор с солнечной батареей к контактам батарейного отсека.


Фото 2.

Датчик температуры сразу же заработал и передал на метеостанцию комнатную температуру. Убедившись, что датчик работает, закрепил на него конденсатор с солнечной батареей и повесил на место.
Что же было дальше?
Все светлое время суток датчик исправно работал, но с наступлением темного времени суток, уже через час, датчик перестал передавать данные. Очевидно, что запасенного заряда не хватало даже на час работы датчика и потом выяснилось почему…

Эксперимент №3
Решил немного доработать конструкцию таким образом, чтобы ионистор (вернул сборку ионисторов 2 фарады) был полностью заряжен. Собрал батарею из трех элементов, получилось 6 вольт и ток 40 мА (при полном освещении солнцем). Данная батарея в тени уже давала до 3,7 В вместо предыдущей 1,8 В (фото 1) и ток заряда до 2 мА. Соответственно ионистор заряжаясь до 3,7 В и имел уже значительно больше запасенной энергии в сравнении с Экспериментом №2.


Фото 3.

Все бы хорошо, но мы теперь имеем на выходе до 5,5 В, а датчик питается от 1,5 В. Необходим DC\DC преобразователь, что в свою очередь вносит дополнительные потери. Тот преобразователь, который у меня был в наличии, потреблял порядка 30 мкА и на выходе давал 4,2 В. Пока мне не удалось найти нужный преобразователь, для того чтобы запитать датчик температуры уже от модернизированной конструкции. (Нужно будет подобрать преобразователь и повторить опыт).

О потерях энергии:
Выше упоминалось, что ионисторы имеют ток саморазряда, в данном случае у сборки 2 фарада он составлял 50 мкА, так же сюда добавляются потери в DC\DC преобразователе порядка 4% (заявленная эффективность 96%) и его холостой ход 30 мкА. Если не брать во внимание потери на преобразование, мы уже имеем потребление порядка 80 мкА.
Отнестись к энергосбережению необходимо особо внимательно, потому как экспериментальным путем установлено, что ионистор емкостью 2 фарады заряженный до 5,5 В и разряженный до 2,5 В имеет так скажем «аккумуляторную» емкость 1 мА. Иначе говоря – потребляя 1 мА с ионистора в течении часа, мы его разрядим с 5,5 В до 2,5 В.

О скорости заряда прямым солнечным светом:
Ток, получаемый от солнечной батареи тем выше, чем лучше батарея освещена прямыми солнечными лучами. Соответственно скорость заряда ионистора увеличивается в разы.


Фото 4.

Из показаний мультиметра видно (0.192 В, начальные показания), через 2 минуты конденсатор зарядился до 1,161 В, через 5 минут до 3,132 В и еще через 10 минут 5,029 В. В течении 17 минут ионистор был заряжен на 90%. Нужно отметить, что освещение солнечной батареи было неравномерным в течении всего времени и происходило через двойное оконное стекло и защитную пленку батареи.

Технический отчет по Эксперименту №3
Технические характеристики макета:
- Солнечная батарея 12 элементов, 6 В, ток 40 мА (при полной засветке солнцем), (в тени пасмурной погоды 3,7 В и ток 1 мА с нагрузкой на ионистор).
- Ионисторы соединены параллельно, суммарная емкость 2 Фарад, допустимое напряжение 5,5 В, ток саморазряда 50 мкА;
- Диод Шотки с падением прямого напряжения 0,3 В, используется для развязки по питанию солнечную батарею и ионистор.
- Размеры макета 55 х 85 мм (пластиковая карта VISA).
От данного макета удалось запитать:
Микроконтроллер с ЖК-дисплеем (ток потребления 500 мкА при 5,5 В, время работы без солнечной батареи, приблизительно 1,8 часа);
Датчик температуры, время работы световой день с солнечной батареей, потребление 6 мА в течении 2 секунд каждые 40 секунд;
Светодиод светился 60 сек при среднем токе 60 мА без солнечной батареи;
Так же был испробован DC\DC преобразователь напряжения (для стабильного питания), с которым удалось получить 60 мА и 4 В, в течении 60 секунд (при заряде ионистора до 5,5 В, без солнечной батареи).
Полученные данные говорят о том, что ионисторы в данной конструкции имеют приблизительную емкость 1 мА (без подпитки от солнечной батареи с разрядом до 2,5 В).

Выводы:
Данная конструкция позволяет накапливать энергию в конденсаторах для беспрерывного питания микропотребляющих устройств. Накопленная емкость 1 мА на 2 фарады емкости конденсатора должно хватить для обеспечения работоспособности микропроцессора с низким потреблением в темное время суток в течение 10 часов. При этом суммарный ток потерь и потребления нагрузкой не должен превышать 100 мкА. Днем ионистор подзаряжается от солнечной батареи даже в тени и способен питать нагрузку в импульсном режиме током до 100 мА.

Отвечаем на вопрос в заголовке статьи - Может ли ионистор заменить аккумулятор?
– может заменить, но пока со значительными ограничениями по току потребления и режиму работы нагрузки.

Недостатки:

  • малая емкость запаса энергии (приблизительно 1 мА на каждые 2 Фарад емкости ионистора)
  • значительный ток саморазряда конденсаторов (ориентировочная потеря 20% емкости за сутки)
  • габариты конструкции определяются солнечной батареей и суммарной емкостью ионисторов.
Достоинства:
  • отсутствие изнашиваемых химических элементов (аккумуляторов)
  • диапазон рабочих температур от -40 до +60 градусов Цельсия
  • простота конструкции
  • не высокая стоимость
После всех проделанных экспериментов пришла идея модернизировать конструкцию следующим образом


Фото 5.

С одной стороны платы располагаются солнечная батарея, с другой стороны сборка ионисторов и DC\DC преобразователь.

Технические характеристики:

  • Солнечная батарея 12 элементов, 6 В, ток 60 мА (при полной засветке солнцем);
  • Ионисторы суммарная емкость 4; 6 или 16 Фарад, допустимое напряжение 5,5 В, суммарный ток саморазряда соответственно 120\ 140\ (пока не известно) мкА;
  • Диод Шотки сдвоенный с падением прямого напряжения 0,15 В, используется для развязки по питанию солнечной батареи и ионистора;
  • Размеры макета: 55 х 85 мм (пластиковая карта VISA);
  • Расчетная емкость без подпитки от солнечных батарей при установке конденсаторов 4; 6 или 16 Фарад, составляет примерно 2\ 3\ 8 мА.

P. S. Если вы заметили опечатку, ошибку или неточность в расчетах - напишите нам личным сообщением, и мы оперативно все исправим.

Продолжение следует…

Идея конденсатора большой удельной емкости осваивалась еще в 1960-х годах, но сегодня отмечается новая волна повышенного интереса к данной технологии, что обусловлено уникальным сочетание эксплуатационных свойств конечного продукта. В наши дни на базе этой технологии выпускаются различные модификации ионисторов и ультраконденсаторов, которые вполне могут рассматриваться в качестве полноценного силового аккумулятора. Концепты суперконденсатора, фото с примером которого представлено ниже, говорят о том, что их будущая конкуренция с привычными аккумуляторными блоками (АКБ) не так уже и фантастична.

Что такое суперконденсатор?

В сущности, это оптимизированная электрохимическая батарея, выполненная в виде компактного конденсатора. Даже при беглом сравнении устройства с типовым аккумулятором для автомобиля можно выделить очевидную разницу в габаритах, а на практике эксплуатации также выйдут на поверхность преимущества в виде более высокого срока службы и мощности. Иными словами, суперконденсаторы вместо аккумуляторов вполне могут применяться, хотя и с некоторыми оговорками, обусловленными ограничениями в плане накопления энергетического потенциала. Подобные нюансы пока еще имеют место по причине несовершенства технологического развития ионисторов, однако ситуация меняется под давлением рынка с его растущими требованиями к элементам питания.

Устройство и конструкция изделия

Основу данного конденсатора образуют два электрода, между которыми традиционно размещается электролитическая среда. Отличия от аккумулятора можно наблюдать в структуре материалов для изготовления электродов, пластины которых покрываются пористым активированным углем. Что касается электролита, то в этом качестве могут применяться органические и неорганические смеси. Конструкционно выделяется и техническое решение изоляции в структуре суперконденсаторов. Вместо аккумуляторных алюминиевых обкладок с диэлектрической прослойкой применяются компоненты с оптимальными свойствами ионной и электронной проводимости. Если продолжать концепцию возможного использования суперконденсатора в качестве аккумулятора, то электронным проводником вполне мог бы выступить пористый углерод, а ионным - раствор серной кислоты. Таким образом может обеспечиваться оптимальный слой разграничения зарядов между электродами без дополнительного включения громоздких изоляторов.

Разновидности суперконденсатора

Уже сегодня можно выделить несколько направлений в разработке ионисторов. Наиболее заметны и перспективны следующие разновидности устройства:

  • Двойнослойные конденсаторы. Стандартная модель, при которой используются упомянутые выше электроды из электропроводящего материала, а в качестве электролита применяется специальный сепаратор. Накопление энергетического потенциала происходит в результате разделения заряда на электродах.
  • Псевдоконденсаторы. Перезаряжаемый аккумулятор из суперконденсатора данного типа может стать весьма успешным решением, поскольку в данном случае предполагаются более развитые способы сохранения энергии. Во-первых, задействуется принцип фарадеевского механизма, связанного с процессами аккумуляции энергии в обычных батареях. А во-вторых, сохраняется и базовая схема электростатического взаимодействия между электродами в двойном электрическом слое.
  • Гибридные конденсаторы. Промежуточная концепция, объединяющая отдельные положительные черты аккумуляторов и конденсаторов. В таких устройствах обычно используют сочетание электродов, выполненных из смешанных оксидов и допированных полимеров. Дальнейшее развитие этого направления связывают с применением композитных материалов, дополненных углеродными носителями и проводящими полимерами.

Основные характеристики

На сегодняшний день сложно говорить об устоявшихся эксплуатационных показателях ионисторов, поскольку технология постоянно совершенствуется, причем с поправкой на улучшение и электрохимических источников тока. Но если брать средние данные по основным характеристикам суперконденсаторов, то конкретные показатели будут выглядеть так:

  • Время зарядки - от 1 до 10 сек.
  • Количество циклов зарядки - порядка 1 млн, что соответствует 30 000 ч.
  • Напряжение в ячейке блока - диапазон от 2,3 до 2,75 В.
  • Энергоемкость - стандартное значение 5 Вт*ч/кг.
  • Мощность - порядка 10 000 Вт/кг.
  • Долговечность - до 15 лет.
  • Рабочая температура - от -40 °С до 65 °С.

Сравнение с обычными АКБ

Основные отличительные параметры заключаются в скорости накапливания энергии и степени отдачи электрического заряда. За счет использования двойного слоя электрического потенциала у суперконденсатора при схожих размерах повышается площадь рабочей поверхности электродов. То есть можно говорить о совмещении лучших свойств АКБ и конденсатора как такового. Если же сравнивать распределение токов аккумулятора и суперконденсатора на нагрузку, то равномерность объемов потребляемого тока будет в целом идентичной, но с двумя поправками. При эксплуатации АКБ возможно смещение наибольшего тока в сторону элемента, расположенного в нижней части блока, а в случае с ионисторами в принципе потенциал будет меньше из-за низкого напряжения. Также к существенным различиям можно отнести разницу в рабочем ресурсе - суперконденсаторы примерно на 25-30 % служат дольше по времени, не говоря о более высоком коэффициенте выполнимых рабочих циклов.

Преимущества эксплуатации суперконденсаторов

Если в целом рассматривать положительные эффекты от использования суперконденсаторов вместо аккумуляторов, то на первый план выйдут следующие качества:

  • Высокая плотность энергии суперконденсаторов позволяет их использовать в электронных приборах как источник кратковременного питания.
  • Экологическая безопасность. Конечно, электрохимические компоненты по-прежнему сохраняются в конструкции, однако их токсическое влияние постоянно сокращается.
  • Возможность применения энергии от возобновляемых источников - ветра, солнца, воды и земли.
  • Расширение возможностей для конструкционной интеграции элементов питания - к примеру, для обслуживания сложных силовых установок, гибридных электрических машин, автомобилей на водородном топливе и т. д.

Стоит отметить и некоторые преимущества суперконденсатора по отношению к обычному конденсатору. Их немного, но принципиально важным является большая емкость для накопления энергии. По этому показателю не все модификации ионисторов могут конкурировать с АКБ, однако в сравнении с конденсаторами в параметре электрической вместимости они уверенно выигрывают.

Положительные отзывы о суперконденсаторах

Испытания и частичное применение суперконденсаторов сегодня имеют место в самых разных отраслях. Как показывают отзывы об эксплуатации данных устройств, они подтверждают заявления производителей о высокой надежности, экологической безопасности и высокой емкости. Что особенно важно с точки зрения сравнения суперконденсаторов и аккумуляторов, первые не так требовательны к созданию специальных условий при физическом обращении. Отчасти это связано с той же низкой токсичностью компонентов, но в большей степени эргономика эксплуатации обусловлена высокой степенью защиты корпуса. То есть пользователю не нужно предусматривать специальные приспособления для обслуживания суперконденсаторов в герметизированных условиях. Также и небольшая масса с оптимизированными габаритами облегчает выполнение стандартных манипуляций при обслуживании.

Негативные отзывы о суперконденсаторах

Существуют и слабые места у данного рода конденсаторов, которые также очевидно проявляются на практике эксплуатации. В частности, пользователи указывают на их малую энергетическую плотность, низкую производительность и не всегда достаточный уровень напряжения, что заставляет задействовать несколько элементов для обслуживания одной целевой единицы потребителя. Во многом эти недостатки и не позволяют сегодня применять суперконденсаторы вместо аккумуляторов, хотя, опять же, технологическое развитие с большей вероятностью решит и эти проблемы.

Перспективы развития конденсаторов

По оценкам специалистов и разработчиков элементов питания, уже в скором будущем конденсаторы нового поколения станут использоваться повсеместно. Это станет возможным благодаря активному наращиванию удельной емкости устройств. К этому же стоит добавить и улучшение технико-конструкционных характеристик суперконденсаторов, что в первую очередь касается размеров и веса. Вместе с этим уже сегодня организуются испытания ионисторов мощностью до 2,5 мВт. В будущем подобные системы могут применяться в обслуживании транспортных сетей, промышленных объектов и жилых комплексов.

Заключение

Концепция суперконденсатора считается оптимальным решением в ситуациях, когда есть краткосрочная потребность в энергоснабжении с оперативным зарядом. Отчасти в этом заключается противоречие с идеей электрохимических батарей, которые ориентируются на длительное поддержание питания с определенными параметрами. Но возможно ли применение суперконденсатора вместо аккумулятора на автомобиле с учетом данной эксплуатационной особенности? С высокой долей вероятности передовые автоконцерны и будут использовать конденсаторы высокой удельной емкости, но только в специальных гибридных версиях, объединяющих в себе положительные качества ионисторов как таковых и традиционных электрохимических компонентов. К примеру, сегодня подобные решения применяются в виде сочетания электрохимической свинцово-кислотной структуры и суперконденсатора.

Ионисторы все чаще попадают в число основных элементов автомобильных электронных систем. Суперконденсатор для автомобиля решает задачу запуска двигателя, за счет чего сокращается нагрузка на аккумулятор. Кроме этого, за счет оптимизации монтажных схем уменьшается масса транспортного средства.
Широкое применение ионисторы для автомобиля нашли в изготовлении гибридных авто. У них работа генератора зависит от двигателя внутреннего сгорания, и машина приводится в движение с помощью электромоторов. Ионистор для автомобиля в такой схеме является источником быстро получаемой энергии при начале движения и ускорении. В процессе торможения происходит подзарядка накопителя.
Сейчас суперконденсатор вместо аккумулятора используется лишь частично. Впрочем, в ближайшем будущем полная замена наверняка станет реальной, потому что ученые активно занимаются разработкой таких технологий.

Когда нужен ионистор для запуска двигателя?
Суперконденсатор для авто требуется в случаях, когда есть риск того, что штатная аккумуляторная батарея не справится с задачей запуска двигателя внутреннего сгорания. Например, ионистор для автомобиля помогает в следующих ситуациях:
- аккумулятор хронически недополучает заряд в условиях частых поездок на короткие расстояния;
- мощности АКБ бывает недостаточно для запуска двигателя. Чаще всего такая проблема встает в зимнее время;
- необходимо снизить пиковые нагрузки на аккумулятор для продления его ресурса.
Даже когда батарея полностью вышла из строя, некоторые используют ионистор вместо аккумулятора. Он решает задачу запуска двигателя, а в дальнейшем бортовая сеть питается в основном от генератора. Впрочем, суперконденсатор вместо аккумулятора рекомендуется применять только в аварийном режиме, пока не появится возможность установить новую АКБ.
В штатной ситуации ионистор для запуска двигателя используется в следующем формате. Он подключается параллельно аккумуляторной батарее и в момент пуска принимает на себя основную нагрузку. Заторможенный стартер может потреблять очень большой ток (сотни ампер). Выработкой именно этого начального пускового тока для неподвижного стартера и коленвала будет заниматься для автомобиля. Когда основная нагрузка будет обеспечена, ионистор вместе с батареей произведут запуск мотора в более спокойном режиме.
Ионисторы для автомобиля не только продлевают ресурс аккумуляторов, но и положительно сказываются на работе бортовой электроники. При использовании суперконденсаторов для авто снижается провал напряжения в момент запуска, поэтому все электронные компоненты работают в более стабильном режиме. По этой же причине улучшается работа системы зажигания.
При движении связка из аккумулятора и суперконденсатора для автомобиля будет сглаживать возникающие в бортовой сети перепады напряжения. Они возникают из-за того, как ведет себя различное электрооборудование при разной нагрузке и оборотах двигателя. Наличие ионистора в цепи минимизирует негативное влияние таких скачков. Подробнее узнать о возможности использования ионистора вместо аккумулятора, а также параллельно с ним вы можете у наших консультантов.



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух